What number
multiplied by itself
4 t im es equals 81?
9 • 9 = 81 and
(3 • 3)(3 • 3) = 81.
Think.
How can the
fractional exponent
be rewritten?
Ex p o n e n t s c a n b e
rewritten as multiple
factors if the base of
each exponential factor
is the same.Pro b lem 4 Si m p l i f y i n g Ex p r e ssi o n s W i t h Rat i o n a l Exp o n e n t sSimplify the expression 814.^181? Fi n d t h e n u m b e r t h a t w h e n m u l t i p l i e d b y i t s e l f f o u r t i m e s g i v e s 81.81? = 3 3 • 3 • 3 • 3 = 81Got It? 4. Simplify each expression
a. 16? b. 27? c. 64?You can also have expressions like 92, which means 9 2 • 9 2 • 92. Consider each factor
individually. Because 9 2 = 3, you know 9 2 • 9? • 9 2 = 3 • 3 • 3 = 27. So, 9 2 = 27.Pr o b lem 5 Si m p l i f y i n g Ex p r e ssi o n s W i t h Ra t i o n a l Exp o n e n t s
Simplify the expression 64*.^3
64^ = 645 • 64? • 645 Re w r i t e t h e e xp r e ssi o n.= 8*8*8 Substitute 8 for 64?.= 512 Simplify.& Got It? 5. Simplify each expression.
a. 255 b. 27? c. 16?You can use the properties of multiplying powers with the same base to simplify
expressions with rational exponents.Pro p ert y Multiplying Powers With the Same BaseWords To multiply powers with the same base, add the exponents.
Algebra am • an = am+n, where a t 0 and m and n are rational numbers
Ex a m p l e s 4? • 4? = 4?+? = 4? b7 • b- 4 = b7+(- 4 ) = b3428 Ch ap t er 7 Ex p o n e n t s a n d Ex p o n e n t i a l Fu n c t i o n s