- -5
- 3
- -12
-1 4 -1 2 -10 - -11 21. 5 23. -11 25
- -20 33. 48 35. -2 37
- $48.54 45. -7.1 47
II
1.6 41. | |36 1 s
The sum of -4 and 5 is +1,
4.4 27. -3
-20.3 39.
not -1; —4 — (—5) = —4 + 5=1 49. 51. 1
- positive 55. negative 57. Find the absolute value of
each number. The sign of the number with the larger
absolute value will be the sign of the sum. 59. False; if
both numbers are negative, the difference is larger than
the sum. If the absolute values are equal, the sum is 0. - 29.62 in. 63. -2 65. Sometimes; only true when
m = 0, the result will be -m = m 67. 69a. Yes;
check students' work. Sample: 13 — 1 1 = 1 2 1 = 2 and
Prop, of Add. b. False; answers may vary. Sample:
4(2 + 1) =£ 4(2) + 1 c. No; it is true when a and b are
both either 0 or 2.
Lesson Check 1. Comm. Prop, of Add. 2. Assoc. Prop,
of Mult. 3. $4.45 4. 24 d 5a. no b. yes 6. Comm. Prop,
of Mult.; Assoc. Prop, of Mult.; multiply; multiply
Exercises 7. Comm. Prop, of Add. 9. Ident. Prop, of
Add. 11. Comm. Prop, of Mult. 13.36 15.9.7 17.80
- $110 21. 18x 23. 110p 25. 11 + 3x 27. 1.2 + 7cf
- 1.5n 31. 11y 33. False; answers may vary. Sample:
8 -e 4 + 4 + 8 35. true; Mult. Prop, of -1
37a. 497 mi b. 497 mi c. The Commutative Property of
Addition applies to this situation. 39. no 41. yes 43. yes - no 47. Hannah can only afford to give all her friends
the same gift. 49. 390 51. 0 53. no; (a - b) -
c # a - (b - c) 55. no; (a a- b) a- c + a a- (b + c)
57. (b + c)a = a{b + c) and ba + ca = ab + ac by the
Comm. Prop, of Mult. 59. H 61. F 62.-6,1.6, V6,
63 63. -17, 1.4, f, 102 64.-4.5,1.75, V4,141 - 14 66. 1 67. 1.1 68. ^
Got It? 1. -4 2a. -24 b. -2 c. -2 d. -8 3a. 13 5
b. any value where a = £> 4. -2473 ft, or 2473 ft below
sea level
Lesson Check 1. -3 2. -3 3. -3 4. -7 5. 2 6. -7
- 0 8. Subtracting is the same as adding the opposite.
- The opposite of a number is the number that is added
to it to equal 0. If a number is positive, its opposite is
negative. However, if a number is negative, its opposite is
positive.
Exercises - 5 ii— i— i— i— i— i— i— i— i— i— i— - ----------------------h
-3 -2 -1 01234567
Lesson 1-5 pp. 30-36
11 - 3 1 = | - 2 1 = 2 b. No; check students' work. Sample:
|3 + (16)| = |- 3 1 = 3 but |3| + | — 6 | = 3 + 6 = 9
- H 73. F 75. yes 76. no 77. yes
- rational numbers 79. rational numbers 80. rational
numbers, whole numbers, natural numbers, and integers - rational numbers 82. irrational numbers 83. 18.75
- 17 85. 318
Lesson 1-6 pp. 38-44
Got It? 1a. -90 b. 2.4 c. -§£ d. 16 2a. 8 b. ±4
c. - 1 1 d. ± \ 3. - $72 4a. — ^ b. Yes; a positive
divided by a negative is negative and the opposite of a
positive divided by a positive is also negative.
Lesson Check 1. 36 2. 3.-16 4. | 5.-5
6. -5 —5 t -5 j 7a. 2; a positive number
—i-------- 1 --------- 1 ------ 1 —*- has a positive and negative
~15 “10 ~5 0 square root. b. 1 ; V 0 = 0 ,
so there is one square root.
Exercises 9. 96 11. 20.5 13. -25 15. ^ 17. 1
19. 1.44 21. 13 23. -30 25. -§ 27. 29. ±0.5
31. -6 33. -3 35. -0.9 37. -250 39. $115 41. 3
43. -1 45. —i f f 47. \ 49. -94\ bushels 55. -180
57. 38| 59.-13°F tr 61. First change -2%j to the
improper fraction Then multiply - I 3 by the
reciprocal of -| , which is -|. 63. or 12g| 65a. If
0 + x = y, then xy = 0. Since x + 0, then y = 0 by the
Zero Property of Multiplication, b. Suppose there is a
value of y such that x -e 0 = y. Then x = 0 • y, so x = 0.
But this is a contradiction, since x ± 0. So there is no
value of y such that x + 0 = y. 67. Always; the quotient is
-1. 69. -8 71. 1 73.30 74. -10 75. -10 76. Ident.
Prop, of Add. 77. Comm. Prop, of Mult. 78. Assoc. Prop,
of Mult.
Lesson 1 -7 pp. 46-52
Got It? 1a. 5x + 35 b. 36 - 2f c. 1.2 + 3.3c
d. - 2 y 2 + y 2 a. |x - y b. ^ + \x c. | + =rx
d. \ - \x 3a. -a - 5 b. x - 31 c. -4x + 12
d. - 6 m + 9n 4. $29 5a. 2y b. -12mn 4 c. 8 y 3 z-
6 yz 3 d. No; it is already simplified since there are no like
terms to combine.
Lesson Check 1a. 7y + 14 b.- 8 x + 24 c.-4 + c
d. -11 - 2b 2. - 8 x 2 + 3xy + (-9x) + (-3) 3. 2 ab +
(-5ab2) + (-9a2b) 4. yes 5. no 6 a. yes b. no;
Commutative Prop, of Mult. c. yes d. no; Associative
Prop, of Add. 7. 500 - 1; answers may vary. Sample:
These numbers are easily multiplied by 5, making it
possible to use the Distr. Prop, to solve this using mental
math. 8 a. yes; no like terms b. This expression can be
simplified by using the Distr. Prop. c. No; 12xyand 3yx
are like terms.
Exercises 9. 6 a + 60 11. 25 + 5w 13. 90 - 10f
15. 11 2b + 96 17. 4 .5 - 12c 19. f-2 21. 12z + 15