4,V)
0
i
C
<
"p
<d
53
«o
y
\
(0,8)
X= C
X
- )- 0
11. x - 2 i y
\ X
O
I\ 2 ST 7
- Answers will vary. Sample: y = - x 2 14. Answers will
vary. Sample: y = x 2 15. Answers will vary. Sample:
y = x2 16. Answers will vary. Sample: y = 0.5x 2 17. ±2 - ±5 19.0 20. no solution 21. + | 22. ±4 23. -3,
-4 24.0,2 25.4, 5 26. -3 ,\ 27. - §, | 28. 1,4 - 2.3 in. 30. -6.74, 0.74 31. 0.38, 2.62 32. -2,
-1.5 33. -9.12, -0.88 34. -1.65, 3.65 35. 1.26,
12.74 36. 7.6 ft by 15.8 ft 37. 6.4 in. by 13.8 in. 38. two - two 40. -1 .8 4 , 1.09 41. -2.5, 4 42. 7.87, 0.13
- -0.25, 0.06 44. ± 5; square roots because there is no
x-term 45. 3; factoring because it is easy to factor 46. 1.5 s
y
X
- 1 - 0
48.
quadratic
y
X
6 i
exponential
- y=3x-2 50. y=5(2)x 51. (-1, 8 ), (2, - 1 )
52.(0, -1), (1, -2 ) 53. (-1, -1), (1, 1) 54. (-2, -4),
(3,^6 ) 55. (-^8 , 3), (12, 123) 56. (7, - 2 ) , (9,^6 )
57. (-7, -45), (-4, -21) 58. ( - 1 3 , 64), (3, - 1 6 ) - ( 6 , 69) (10, 145) 60. ( - 9 , 33), ( - 1 2 , 63) 61. If y o u
look at the graph and see how many times the graphs
intersect, that is how many solutions the system will have.
Ch ap t er 10
Get Ready! p. 611
I.6 2. 18 3. 4.5 4. 8 5. 10 6. 4 7. 12 8. 14
- —2 b^2 + 5b + 12 10. 9b4 - 4 9
II. - 1 5 x 2 - 11 x — 2
12. y
i I
\/
\/
\/
i
V/ X
—i 0 - \ di
/-
-<
I
0
X
4
Lesson 10-1
15.2 16.2 17.0
- 1 19.2 20.2
- They both contain the
same radical expression,
V3.
pp. 614-618
Go t It? 1. 15 cm 2. 9 3a. no; 202 + 47 2 + 522
b. yes; (2a)2 + (2b)2 = 4a2 + 4b 2 = 4(a 2 + b2) =
4c 2 = (2c)2
Lesso n Ch eck 1. 39 2. 7 3. yes; 12 2 + 35 2 = 37 2
- If you are a student, then you study math. 5. The
value of 13 should have been substituted for c since it is
the hypotenuse. The correct equation is
132; x = 5.
Ex e r c i se s 7.^8 9.^12 11.17 13. 4.5 15. 6.1 17.^41
19.8.5 21. 1.2 mi 23. yes 25. no 27. yes 29. 10 ft - yes 33. yes 35. yes 37.719 ft 39. Yes;
502 + 1202 = 1302, so the triangle formed by the forces
is a right triangle. 41a. a 2 + 2ab + b 2 b. c 2 c. ^ab
d. a 2 + 2 ab + b 2 = 4 ^abj + c2; a 2 + b 2 = c2; it is the
Pythagorean Theorem.
Lesson 10-2 pp. 619-625
Go t It? 1. 6V2 2. -4m 5 V 5m 3a. 18V3 b. 3a 2 V 2
c. 21 Ox 3 d. yes; V l 4 f 2 = t V J 4 4. w VTT 5a. 4
L 3. 5yv9 b^ c — 6 a.yV5 ^ VTOm _ V21sb .l s —c.—r
Lesso n Ch eck 1. 7V2 2. 4b2Vb 3. 12m 2 4.
- 7 a. Yes; there are no perfect-square
factors in 31, there are no fractions in the radicand, and
there are no radicals in the denominator, b. No; t h e r e is a
fraction in the radicand. c. No; 25 is a perfect-square
factor of 175. 8. Answers may vary. Sample:
3 3 . V I 3V | = V I.
VT2 2 V I * V I 6 2 •
- 7 a. Yes; there are no perfect-square
908