insert a term with a coefficient of 0 as a placeholder.
- Divide, multiply, subtract, bring down, and repeat as
necessary. 7. - x 4 + Ox3 + Ox2 + Ox + 1
Ex e r c i se s 9. 3x4 - \ 11. n2 - 18n + 3
11
7
22 - f3 + 2 l2 — 41 + 5 15. 3l2 + y -
- y - 3 + Ff y 19,
- 2w2 + 2w + 5 - w_ 1
- 4c2 - 8 c + 16 27. a - 1
2(? 1 0 '' 2q + 1
10 2 3. c 2------—
1
- 1+ 5 2f
4a + 7
^6 31. 4g 2 + 2g + 1
- 4c 2 + 9c + 7 , 3c_ 4^36 v
35.3y 2 + 5y + f + 3 ^ 5 ) 3 7. 2 x + 2 - 513 - 2 5 l 2 + 1 1 5 1 - 575 +
- 3s - 8 + 2^3 43. 2r4 + r2 - 7
- z3 - 3 z 2 + 1 0 Z -3 0 +z + 3
- 6m2 - 24m + 99 - 49. m 2 + 5m + 4
301 , 1703 , 891
200 ^ 400 ^ 400(2s + 3)53a. t = j
b. (I2 - 7 1 + 12) h 55. (x8 + 1 Xx4 + 1 )(x2 + 1 )(x + 1);
factoring is much simpler and faster, since long division
requires writing a polynomial with 17 terms. 57. (3x+ 2) - 2 b3 - 2 b 2 + 3 61. G 63. There are 18 • 28 = 504
seats in the theater. If 445 adults were at the theater, the
revenue would be 445 * 4 = 1780. That means the
revenue for the children's tickets is 1935 - 1780 = 155.
So the number of children's seats sold is 155 a- 2.5 = 62.
The total number of seats sold would be 62 + 445 = 507.
Since 507 > 504, Barbara's answer is not reasonable. - n + 2 65,(t- 5)(3t+ 1)(2t+ 11)3f(2f - 55)(f + 1)
- j* + (x + 7)(x + 8)2 75!! X + % 68- | 69- 3 -J2 12
Lesson 11-4
66.3c + 8 2c + 7
70.x 71. £
pp. 684-689
Go t It? 1 3a - 4 5a 2a.z + 3
-2 - 14c + 4 45 h 4 m.
(3 c - 1 )(c — 2 ) 4 r D - 5
Sn-2
45
q-2
; if n is the
miles per gallon when the truck is full, then m = 1.25/7
and therefore n = ^ or
Lesso n Ch eck 1.x - 7^11 ’ y + 2 ■ 24b3 ’ 3r16b ■^10
- If the expressions have like denominators, add or
subtract numerators as indicated and place over the
denominator. If they have unlike denominators, factor if
needed, find the LCD, rewrite the expressions with the
common denominator, add or subtract as indicated, and
simplify. 6. The procedure is the same. The LCD is the
LCM of the denominators. 7a. yes b. No, it will give you
a common denominator, but not necessarily the least
common denominator.
Ex e r c i se s 9. ^^14 1 1. 6 c - 2 8 1 3. -^1 ,^1 15.^2
- 2x2 19. 7z 21. 5(x + 2) 23. (m + n)(m - n)
25.
31
35 + 6 a
15 a 27,
a2 + 12a + 15
189 - 9n
7 n3
33a. 1
29.(a + 4)(a - 3)
r + 0.7 r
(,a + 3 )(a + 5)
J--JLZ. u I!
4(a + 3) OJr ° m Ir
c. about 0.81 h or 48.6 min 35. Not always; the
numerator may contain a factor of the LCD.
37 -yz + 2y+2 ,n r - 2k -^6 10x+15
43
49
3y+ 1
5000r+ 250,000
39.
r(r + 100)
- ~4x
45
9 + p 3
8x2 + 1
3 + xy53.
Lesson 11-5
3 b
x
3y + 4x
2y - 3x
41.
47.
x + 2
—3x - 5
x(x - 5)
Go t It? 1a.
expression ^
2a. -I 2-
pp. 691-697
(^37) 7 “ *■ 2' 3b. -7, -1 c. The
cannot be negative. 3. 4.8 h 4a. -8
b. -3, 7 5. 0
Lesso n Ch eck 1 .- 1 2. 1, 5 3. 0 4. about 28 min
- An extraneous solution of a rational equation is an
excluded value of the associated rational function. - Answers may vary. Sample: y y = y
- The student forgot to first multiply both sides of the
equation by the LCD, 5m.
Ex e r c i se s 9. 3 11. -1 ,6 13. -2 15. 5 17. -2, 4 - -y 21. — 1 23. 1 j h 25. 3 27. -f, 4 29. no solution
- You could rewrite the right side of the equation as
y y and then cross multiply. 33. -14 35. -5, 2 - -f, -1 39. 12 h
41a.-----“ b. (-9 .5 3 , 1.07),
(-4 .1 6 , 1.35),
(- 1 .1 2 , 5.76),
(0.81, 10.16)
c. Yes; the x-values are solutions to the original equation
since both sides are equal. 43. 20 fl 45. 11 y h 47. 0, \
- 1 51. 32 L of 80% solution, 18 L of 30% solution
30 m 1 h
1 h ’ 3 6 0 0 S
3b2 + 2ht + 4h - F 55.
57: 2(t - 2)(f + 2) 58.
« = 44 ft/s 1 mi ' 56. —x2y2zyT
-4k - 61
(k-4)(k+ 10)
y
/ X
0
c
Po w erAlg eb ra.com Selected Answers 913
Selected A n s w e r s