Using Area Formulas
Find an expression that represents the area in (a)FIGURE 1and (b)FIGURE 2.
EXAMPLE 8
OBJECTIVE 6 Use combinations of rules.
Using Combinations of Rules
Simplify.
(a)
Power rule (c)
Multiply fractions.
Product rule
or
32
9
=
25
32
,
=
22 +^3
32
=
22 # 23
32 # 1
=
22
32
#^2
3
1
a
2
3
b
2
# 23
EXAMPLE 7
300 CHAPTER 5 Exponents and Polynomials
(b)
Product rule
= 57 x^7 Power rule (b)
= 15 x 27
15 x 2315 x 24
(c)
Power rule (b)
Power rule (a)
Commutative and associative properties
,or Product rule; multiply.
Notice that 12 x^2 y^324 means 24 x^2 #^4 y^3 #^4 , not 12 # 42 x^2 #^4 y^3 #^4.
= 16 # 27 x^11 y^18432 x^11 y^18
= 24 # 33 x^8 x^3 y^12 y^6
= 24 x^8 y^12 # 33 x^3 y^6
= 241 x^2241 y^324 # 33 x^31 y^223
12 x^2 y^32413 xy^223
(d)
Power rule (b)
Power rule (a)
Product rule
= -x^21 y^14 Simplify.
= 1 - 1251 x^2121 y^142
= 1 - 1221 x^621 y^221 - 1231 x^1521 y^122
= 1 - 1221 x^322 y^2 # 1 - 1231 x^5231 y^423
= 1 - 1 #x^3 y 221 - 1 #x^5 y^423 - a=- 1 #a
1 - x^3 y 221 - x^5 y^423
NOW TRY
CAUTION Be aware of the distinction between and.
, while
OBJECTIVE 7 Use the rules for exponents in a geometry application.
12 y 23 = 2 y# 2 y# 2 y= 8 y^32 y^3 = 2 #y#y#y.
12 y 23 2 y^3
NOW TRY
EXERCISE 7
Simplify.
(a) (b)
(c) 1 x^4 y 251 - 2 x^2 y^523
a 18 k 2518 k 24
3
5
b
3
# 32
NOW TRY ANSWERS
- (a) (b)
(c) - 8 x^26 y^20
(^24312589) k 9
5 x^3
6 x^4
FIGURE 1
3 m^3
6 m^4
FIGURE 2
Assume , .x 70 m 70
Don’t forget each factor of - 1.
http://www.ebook777.com
http://www.ebook777.com