Beginning Algebra, 11th Edition

(Marvins-Underground-K-12) #1
Using Area Formulas

Find an expression that represents the area in (a)FIGURE 1and (b)FIGURE 2.


EXAMPLE 8

OBJECTIVE 6 Use combinations of rules.


Using Combinations of Rules

Simplify.


(a)


Power rule (c)

Multiply fractions.

Product rule

or


32


9


=


25


32


,


=


22 +^3


32


=


22 # 23
32 # 1

=


22


32


#^2


3

1


a


2


3


b


2
# 23

EXAMPLE 7

300 CHAPTER 5 Exponents and Polynomials


(b)


Product rule

= 57 x^7 Power rule (b)


= 15 x 27


15 x 2315 x 24


(c)


Power rule (b)
Power rule (a)
Commutative and associative properties

,or Product rule; multiply.


Notice that 12 x^2 y^324 means 24 x^2 #^4 y^3 #^4 , not 12 # 42 x^2 #^4 y^3 #^4.


= 16 # 27 x^11 y^18432 x^11 y^18


= 24 # 33 x^8 x^3 y^12 y^6


= 24 x^8 y^12 # 33 x^3 y^6


= 241 x^2241 y^324 # 33 x^31 y^223


12 x^2 y^32413 xy^223


(d)


Power rule (b)
Power rule (a)
Product rule

= -x^21 y^14 Simplify.


= 1 - 1251 x^2121 y^142


= 1 - 1221 x^621 y^221 - 1231 x^1521 y^122


= 1 - 1221 x^322 y^2 # 1 - 1231 x^5231 y^423


= 1 - 1 #x^3 y 221 - 1 #x^5 y^423 - a=- 1 #a


1 - x^3 y 221 - x^5 y^423


NOW TRY

CAUTION Be aware of the distinction between and.


, while


OBJECTIVE 7 Use the rules for exponents in a geometry application.


12 y 23 = 2 y# 2 y# 2 y= 8 y^32 y^3 = 2 #y#y#y.


12 y 23 2 y^3


NOW TRY
EXERCISE 7
Simplify.


(a) (b)


(c) 1 x^4 y 251 - 2 x^2 y^523


a 18 k 2518 k 24

3

5

b

3
# 32

NOW TRY ANSWERS



  1. (a) (b)


(c) - 8 x^26 y^20

(^24312589) k 9
5 x^3
6 x^4
FIGURE 1
3 m^3
6 m^4
FIGURE 2
Assume , .x 70 m 70
Don’t forget each factor of - 1.
http://www.ebook777.com
http://www.ebook777.com

Free download pdf