SECTION 5.6 Special Products^337
Finding the Product of the Sum and Difference of Two TermsFind each product.
(a)
Use the rule for the product of the sum and difference of two terms.
Apply the exponents.(b)
= 16 x^2 - y^2
= 14 x 22 - y^2
14 x+ y 214 x-y 2
= 25 m^2 - 9
= 15 m 22 - 32 1 x+y 21 x-y 2 =x^2 - y^2
15 m+ 3215 m- 32
15 m+ 3215 m- 32
1 x + y 2 1 x - y 2NOW TRY EXAMPLE 4
EXERCISE 4
Find each product.
(a)
(b)
(c)y 13 y+ 1213 y- 12
A 5 r-^45 BA 5 r+^45 B14 x- 6214 x+ 62NOW TRY
EXERCISE 5
Find the product.
12 m- 123NOW TRY ANSWERS
- (a)
(b)
(c) 9 y^3 - y
25 r^2 -^162516 x^2 - 36(c)
= z^2 -
1
16
az-
1
4
baz+
1
4
b
(d)
Distributive property NOW TRYOBJECTIVE 3 Find greater powers of binomials.The methods used in the
previous section and this section can be combined to find greater powers of binomials.
Finding Greater Powers of BinomialsFind each product.
(a)
Square the binomial.
Multiply polynomials.
Combine like terms.(b)
Square each binomial.
Multiply polynomials.Combine like terms.(c)
Square the binomial.
Multiply polynomials.
Combine like terms.=- 2 r^4 - 12 r^3 - 24 r^2 - 16 r Multiply. NOW TRY
=- 2 r 1 r^3 + 6 r^2 + 12 r+ 82
=- 2 r 1 r^3 + 4 r^2 + 4 r+ 2 r^2 + 8 r + 82
=- 2 r 1 r + 221 r^2 + 4 r+ 42
=- 2 r 1 r + 221 r+ 222 a^3 =a#a^2
- 2 r 1 r+ 223
= 16 y^4 - 96 y^3 + 216 y^2 - 216 y+ 81
- 108 y+ 36 y^2 - 108 y+ 81
= 16 y^4 - 48 y^3 + 36 y^2 - 48 y^3 + 144 y^2
= 14 y^2 - 12 y+ 9214 y^2 - 12 y+ 92
= 12 y- 32212 y- 322 a^4 =a^2 #a^2
12 y- 324
= x^3 + 15 x^2 + 75 x+ 125
= x^3 + 10 x^2 + 25 x+ 5 x^2 + 50 x+ 125
= 1 x^2 + 10 x+ 2521 x+ 52
= 1 x+ 5221 x+ 52 a^3 =a^2 #a
1 x+ 523
EXAMPLE 5
= 4 p^3 - p
= p 14 p^2 - 12
p 12 p+ 1212 p- 12
- 8 m^3 - 12 m^2 + 6 m- 1