SECTION 8.4 Rationalizing the Denominator 521Complete solution available
on the Video Resources on DVD
8.4 EXERCISES
Rationalize each denominator. See Examples 1 and 2.35.Concept Check To rationalize the denominator of an expression such as , we multiply
both the numerator and denominator by. By what number are we actually multiplying
the given expression, and what property of real numbers justifies the fact that our result is
equal to the given expression?36.In Example 1(a),we showed algebraically that. Support this result numeri-
cally by finding the decimal approximation of on your calculator and then finding thedecimal approximation of. What do you notice?Simplify. See Example 3.
- B
256
125#
B1
B 1616
27#
B1
B 99
8#
B7
B 162
5#
B3
10B1
11#
B33
B^1617
3#
B17
B^61
10#
B10
B^33
4#
B1
5B4
3#
B3
B 42
9#
B9
B 21
8#
B1
B 21
12#
B1
3B5
8#
B5
B^621
7#
B21
B^819
20#
B20
B^37
13#
B13
3326
29
26326
= 2
9
26234
23B17
B 1113
5- B
1
6- B
1
525
21028
22427
23263
245- 5
275 - 3
250
B16
B^79
B^51
B^81
32B5
B 840
326
23210
2521
24512
27210
23006
220012
2188
2279215
62212210
823926
25823
2515
2104
2615
2155
253
226
25