CHAPTER 9 Summary 589Step 3 Take half the coefficient of x, square it, and add
the square to each side of the equation. Factor
the variable side and combine terms on the
other side.
Step 4 Use the square root property to solve the
equation.
AddFactor. Add.ororororThe solution set is e- 2 26
2
f.x=- 2 - 26
2
x=- 2 + 26
2
x=- 1 -26
2x=- 1 +26
2x+ 1 =-26
2x+ 1 =26
2x+ 1 =-
B3
2x+ 1 =
B3
21 x+ 122 =3
2x^2 + 2 x+ 1 = C 21122 D^2 = 12 =1.1
2+ 19.3 Solving Quadratic Equations by the
Quadratic FormulaQuadratic Formula
The solutions of are
The discriminant of the quadratic equation is
b^2 4 ac.xb 2 b^2 4 ac
2 a.ax^2 +bx+c=0,aZ0,SolveSimplify.Factor out 2.Divide out 2.The solution set is e.
2 210
3fx=
2 210
3x=(^2) A 2 (^210) B
2 # 3
= 2210
240 = 24 # 10
x=
4 2210
6
x=
4 240
6
c=- 2
a=3,b=-4,
x=
- 1 - 42 21 - 422 - 41321 - 22
2132
3 x^2 - 4 x- 2 =0.CONCEPTS EXAMPLES
9.4 Complex Numbers
The imaginary unit is i, where
, and thus,For the positive number b, 2 bi 2 b.
i 2 1 i^2 1.
2 - 19 =i 219Addition
Add complex numbers by adding the real parts and
adding the imaginary parts.
Add.=- 6 + 8 i= 13 - 92 + 16 + 22 i13 + 6 i 2 + 1 - 9 + 2 i 2(continued)