Beginning Algebra, 11th Edition

(Marvins-Underground-K-12) #1








37.rational numbers, real numbers 38.rational numbers, real numbers
39.natural numbers, whole numbers, integers, rational numbers, real
numbers 40.irrational numbers, real numbers 41. 42.





    1. 45.true 46.true 47.true 48.true



  1. (a) 9 (b) 9 50. (a) 0 (b) 0 51. (a) (b) 6

  2. (a) (b) 53. 12 54. 55. 19 56. 7 57. 6

  3. 4 59. 17 60. 61. 21.8 62. 14 63. 10

  4. 19 65. 11 66. 1 67. 7 68. or 69.10.31

  5. 12 71. 2 72. 3 73.









    1. 2 78. 1 79.$26.25



  6. 10°F 81. $29 82. 10° 83. 38 84.9544.2

  7. 36 86. 105 87. 88.10.08 89. 20 90. 10

  8. 24 92. 35 93. 4 94. 20 95. 96.11.3 97. 1

  9. 2 99. 1 100.0.5 101. 18 102. 18 103. 125

  10. 423 105. 106.













    1. 32 112. 3 113.identity property
      114.identity property 115.inverse property 116.inverse property
      117.associative property 118.associative property 119.distributive
      property 120.commutative property 121.















































  11. 2 136. 137. 138. 139. 16
    140.77.6 141. 11 142. 143. 144. 24
    145.Dividing 0 bya nonzero number gives a quotient of 0. However, di-
    viding a number by0 is undefined. 146. 47°F 147. 0.84 million
    students 148. 1.05 million students 149.1.02 million students
    150.1.39 million students


Chapter 1 Test (pages 83–84)


[1.1]1. 2. 3. [1.2]4.true
[1.4]5. 6.rational numbers, real numbers


19
18 , or 1

1
18

241
120 , or 2

1
120

7
11













16 t- 36 8 x^2 - 21 y^2

25


  • 36
    3
    2 , or -^1
    1

  • 2
    28
    15 , or -^1
    13
    15


15 + 4 x 2 + 8 x; 5+ 12 x^83 , or 2 32 - 241


  • 5 k- 1 - 213 x 2 - 7 x; - 13 x


16 p^216 p^2 + 2 p - 4 k+ 12 - 2 m+ 29


  • 48 + 12 t 312 s+ 5 y 2 4 r- 5 s 11 m


71 y+ 22

x 3 =-2; - 6 -
8 +^121 - 42 ; 3 15 - -^201112 - 1522 ; -^88 x=-24; -^3

5




    • 4152 - 9; - 29 6 312 + 1 - 624 ; 5















      • -^34 -
        -^12 - -
















34 + 1 - 824 - 5; - 9 - -

3 - 4 + 1 - 824 +13; 1 - 4 - 1 - 62 ; 2




    • 1 - 31 + 122 +19; 0









        • 3543 , - 1 358









    • -^2936 - - -




(^5757) - 3 - - -



  • 6
    -^34 - | 23 |

  • 10 - 9


Answers to Selected Exercises A-3

–4 –2 0 2 4

-^12 2.5
–4 –2 0 24


–4 –2 0 2 4
7.If and are both graphed on a number line, we see that the point
for is to the leftof the point for This indicates
[1.6]8. [1.1, 1.4–1.6]9. 4 10. 11. 2



  1. 6 13. 108 14. [1.3, 1.5, 1.6]15. 6 16. 4
    [1.6]17. 18. 3 [1.4–1.6]19.7000 m 20. 15

  2. trillion [1.7]22.B 23.D 24.E 25.A 26.C
    27.distributive property 28. (a) (b) (c)The distributive
    property assures us that the answers must be the same, because
    a 1 b+c 2 =ab+acfor all a, b, c. [1.8]29. 21 x 30. 15 x- 3

    • 18 - 18





  • $1.42

  • 70


30
7 , or 4^
2
7

2 +- 16 - 82 ; 1 -^176 , or -^2 65


  • 8 - 1. - 8 6-1.

    • 8 - 1




LINEAR EQUATIONS AND INEQUALITIES IN
IN ONE VARIABLE

Section 2.1 (pages 90–92)


  1. (a)expression; (b)expression; (c)equation;
    (d)equation; 3.A and B 5. 7. 9.













































































































    1. 73.Answers will vary. One example is
      . 75. ; 77. ;



  2. 1 81.x 83.r


Section 2.2 (pages 96–97)


  1. (a)multiplication property of equality (b)addition property of
    equality (c)multiplication property of equality (d)addition property
    of equality 3.To find the solution of , multiply (or divide) each
    side by , or use the rule “If , then .” 5. 7. 10





      1. 6 15. 17.0.12 19. 21.











        1. , or







































































        1. 71.Answers will vary.
          One example is. 73. ; 75. ;


















Section 2.3 (pages 104–106)
1.Use the addition property of equality to subtract 8 from each side.
3.Clear parentheses by using the distributive property. 5.Clear fractions
by multiplying by the LCD, 6. 7.D 9. 11. 13.












































































































      1. 25 r 77. 79.
















Summary Exercises on Solving Linear Equations
(pages 106–107)

























  1. 506 8. 5 - 166 9. 5 - 66 10.E- (^965) F 11. 5 all real numbers 6
    5 - 56 546 5 - 5.1 6 5126 5 - 256 5 - 66





  • 6 +x - 5 - x 121 x- 92


3 x+ 2 y
t

65 - h x+15; x- (^55)
x+ 9
9
x
5 all real numbers 6 0 11 - q
51206 566 5 15,000 6 586 546 5206
0 556 5126 5116 506 5186
E-^35 F^55650605 all real numbers^6
5 - 16 E-^12 F 5 - 36 556 506 E 34 F
546 5 - 56 E^52 F



  • 3 m- 5 - 8 + 5 p 556


x 5 - 106


  • 5
    23 x=-^64 x=^6 E 23 F =^2


576 506 E-^35 F 5186

(^5186) E- 3527 F 5 - 306 536 5 - 56 5206
5 - 12.2 6 5 - 486 5726 5 - 356 5146
5126 506 5 - 126 E 43 F 5406
E^152 F^5 -^565 -^46 E-^185 F^5 - 3.6^6



  • 92 - 1 - 4 - 1 566


5


  • 1 - x=a x=-a 4

    • x= 5




x- 6 =- 8 3 x= 2 x+ 175176 7 x- 6 x=- 95 - 96

5186 5126

(^506) E 157 F 576 5 - 46 5136 5296
{0 6 {0 6 5 - 56 5 - 76 5136 5 - 46
5 - 3} {0 6 {2 6 5 - 66 5 - 26 536
(^5106) E 154 F 5 6.3 6 5 - 16.9 6 576 5 - 46
546 5 - 96 E-^34 F 5 - 106 5 - 136
5 - 176 5126 5316 5 - 36
x+ 15 y+ 7 5 - 16
2

Free download pdf