Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1
For each pair of functions, find the quotient and give any x-values that are not in the
domain of the quotient function. See Example 6.
61.ƒ 1 x 2 = 10 x 2 - 2 x, g 1 x 2 = 2 x 62.ƒ 1 x 2 = 18 x 2 - 24 x, g 1 x 2 = 3 x

A


ƒ
gB^1 x^2

308 CHAPTER 5 Exponents, Polynomials, and Polynomial Functions


63. , 64. ,


65.ƒ 1 x 2 = 8 x 3 - 27 , g 1 x 2 = 2 x - 3 66.ƒ 1 x 2 = 27 x^3 + 64 , g 1 x 2 = 3 x+ 4

ƒ 1 x 2 = 2 x^2 - x- 3 g 1 x 2 =x+ 1 ƒ 1 x 2 = 4 x^2 - 23 x- 35 g 1 x 2 =x- 7

Let , , and. Find each of the following. See Example 6.

















71. 72. 73. 74.


75. 76. 77. 78.


Use the distributive property to rewrite each expression. See Section 1.4.












  1. 9 # 6 + 9 #r^2 83. 712 x 2 - 713 z 2 84. 3 x 1 x+ 12 + 41 x+ 12


81 y- 52 - 12 x- 112 4 p 12 p+ 12

PREVIEW EXERCISES


a

h
g

ba-

3


2


a b

h
g

ba-

1


2


a b

ƒ
g

ba

3


2


a b

ƒ
g

ba

1


2


b

a

g
h

a b1- 12

h
g
a b1 32

g
h

a b1x 2

h
g
b1x 2

a

ƒ
h

a b1 12

ƒ
g

a b1 22

ƒ
h

a b1x 2

ƒ
g

b1x 2

ƒ 1 x 2 =x^2 - 9 g 1 x 2 = 2 x h 1 x 2 =x- 3

5.1


exponent
base
exponential (power)


5.2


term
algebraic expression


polynomial
numerical coefficient
(coefficient)
degree of a term
polynomial in x
descending powers
leading term
leading coefficient

trinomial
binomial
monomial
degree of a polynomial
like terms
negative of a polynomial

5.3


polynomial function
composition of functions
identity function
squaring function
cubing function

KEY TERMS


1 ƒg 21 x 2 ƒ 1 g 1 x 22 composite function


NEW SYMBOLS


SUMMARY


CHAPTER 5


60.Concept Check Let and. Use division
to find polynomials and such that
P 1 x 2 =Q 1 x 2 #D 1 x 2 +R 1 x 2.

Q 1 x 2 R 1 x 2

P 1 x 2 = 4 x^3 - 8 x^2 + 13 x- 2 D 1 x 2 = 2 x- 1
Free download pdf