Let and
Let and.
= 12 x+ 122 = 2 x^2 + 1
=ƒ 12 x+ 12 =g 1 x^22
1 ƒg 21 x 2 =ƒ 1 g 1 x 22 1 gƒ 21 x 2 =g 1 ƒ 1 x 22
ƒ 1 x 2 =x^2 g 1 x 2 = 2 x+ 1
=x^2 - 2 x- 1
=x^2 + 2 x+ 1 =x^2 - 12 x+ 12
=ƒ 1 x 2 +g 1 x 2 =ƒ 1 x 2 - g 1 x 2
1 ƒ+g 21 x 2 1 ƒ-g 21 x 2
ƒ 1 x 2 =x^2 g 1 x 2 = 2 x+ 1.
5.3 Polynomial Functions, Graphs,
and Composition
Adding and Subtracting Functions
If and define functions, then
and
Composition of fand g
Graphs of Basic Polynomial Functions
1 ƒg 21 x 2 ƒ 1 g 1 x 22
1 ƒg 21 x 2 ƒ 1 x 2 g 1 x 2.
1 ƒg 21 x 2 ƒ 1 x 2 g 1 x 2
ƒ 1 x 2 g 1 x 2
x
y
(–1, –1) (0, 0)
(–2, –2)
(1, 1)
(2, 2)
f(x) = x
Identity function
f(x) = x
Domain: (–∞, ∞)
Range: (–∞, ∞)
x
y
(0, 0)
(1, 1)
(2, 4)
f(x) = x^2
(–1, 1)
(–2, 4) Squaring function
f(x) = x^2
Domain: (–∞, ∞)
Range: [0, ∞)
x
y
(0, 0)
(1, 1)
f(x) = x^3 (2, 8)
(–1, –1)
(–2, –8)
Cubing function
f(x) = x^3
Domain: (–∞, ∞)
Range: (–∞, ∞)
5.4 Multiplying Polynomials
To multiply two polynomials, multiply each term of one
by each term of the other.
To multiply two binomials, use the FOIL method.
Multiply the Firstterms, the Outerterms, the Innerterms,
and the Lastterms. Then add these products.
Special Products
1 xy 22 x^2 2 xyy^2
1 xy 22 x^2 2 xyy^2
1 xy 21 xy 2 x^2 y^2
FOIL
= 25 a^2 + 30 ab+ 9 b^2 = 4 k^2 - 4 k+ 1
15 a+ 3 b 22 12 k- 122
= 9 m^2 - 64
13 m+ 8213 m- 82
= 2 x^2 - 11 x- 21
= 2 x^2 - 14 x+ 3 x- 21
= 2 x 1 x 2 + 2 x 1 - 72 + 3 x+ 31 - 72
12 x+ 321 x- 72
= 4 x^5 - 5 x^4 + 14 x^3 - 15 x^2 + 6 x
= 4 x^5 + 12 x^3 - 5 x^4 - 15 x^2 + 2 x^3 + 6 x
1 x^3 + 3 x 214 x^2 - 5 x+ 22
Multiplying Functions
If and define functions, then
1 ƒg 21 x 2 ƒ 1 x 2 #g 1 x 2.
ƒ 1 x 2 g 1 x 2 Let and
= 2 x^3 +x^2
=x^2 12 x+ 12
=ƒ 1 x 2 #g 1 x 2
1 ƒg 21 x 2
ƒ 1 x 2 =x^2 g 1 x 2 = 2 x+ 1.
CONCEPTS EXAMPLES
310 CHAPTER 5 Exponents, Polynomials, and Polynomial Functions
(continued)