Factor each trinomial. (Hint:Factor out the GCF first.)
53.
54.
55.
56.
57.
58.
Factor each trinomial. See Example 11.
- 6 z^4 +z^2 - 1 63. 16 x^4 + 16 x^2 + 3 64. 9 r^4 + 9 r^2 + 2
p^4 - 10 p^2 + 16 k^4 + 10 k^2 + 9 2 x^4 - 9 x^2 - 18
r^21 r-s 2 - 5 rs 1 s-r 2 - 6 s 21 r-s 2
z^21 z-x 2 - zx 1 x-z 2 - 2 x^21 z-x 2
2 k^215 - y 2 - 7 k 15 - y 2 + 515 - y 2
p^21 p+q 2 + 4 pq 1 p+q 2 + 3 q 21 p+q 2
m^21 m-p 22 - mp 1 m-p 22 - 12 p^21 m-p 22
a^21 a+b 22 - ab 1 a+b 22 - 6 b^21 a+b 22
SECTION 6.3 Special Factoring 333
Find each product. See Section 5.4.
- 1 y+ 321 y^2 - 3 y+ 92 70. 13 m- 1219 m^2 + 3 m+ 12
1 p+ 3 q 22 12 z- 722
13 x- 5213 x+ 52 18 m+ 3218 m- 32
PREVIEW EXERCISES
OBJECTIVES
Special Factoring
6.3
1 Factor a difference
of squares.
2 Factor a perfect
square trinomial.
3 Factor a difference
of cubes.
4 Factor a sum of
cubes.
OBJECTIVE 1 Factor a difference of squares.The special products intro-
duced in Section 5.4are used in reverse when factoring. Recall that the product of the
sum and difference of two terms leads to a difference of squares.
Difference of Squares
x^2 y^2 1 xy 21 xy 2
Factoring Differences of Squares
Factor each polynomial.
(a)
Factor the difference of squares.
(b)
Factor out the common factor, 4.
Factor the difference of squares.
(c) 16 m^2 - 49 p^2 = 14 m 22 - 17 p 22 = 14 m+ 7 p 214 m- 7 p 2
x^2 - y^2 = 1 x + y 2 1 x - y 2