Intermediate Algebra (11th edition)

(Marvins-Underground-K-12) #1

Rationalize the denominator in each expression. Assume that all variables represent positive
real numbers. See Examples 2 and 3.






















48. 49. 50. 51. 52.


53. 54. 55. 56. 57.


58. 59. 60. 61. 62.


63. 64. 65.


66. 67. 68.


Simplify. Assume that all variables represent positive real numbers. See Example 4.


69. 70. 71. 72. 73.


74. 75. 76. 77. 78.


79. 80. 81. 82.


Rationalize the denominator in each expression. Assume that all variables represent positive
real numbers and no denominators are 0. See Example 5.














86. 87. 88.


89. 90. 91.


92. 93. 94.


95. 96. 97. 98.


Write each expression in lowest terms. Assume that all variables represent positive real
numbers. See Example 6.


99. 100. 101. 102.


103. 104. 105. 106.


11 y- 2242 y^5
22 y

6 p+ 224 p^3
3 p

12 - 9272


18


16 - 428


12


- 5 + 522


5


3 - 325


3


24 + 1225


12


30 - 2026


10


32 x
2 x- 22 y

52 k
22 k+ 2 q

2 a+ 2 b
2 a- 2 b

2 x- 2 y
2 x+ 2 y

5


32 r+ 2 s

4


2 x- 22 y

r- 9
2 r- 3

m- 4
2 m+ 2

25 + 26


23 - 22


22 - 23


26 - 25


- 1


322 - 227


2


325 + 223


227


3 - 23


28


3 - 22


4


5 + 26


3


4 + 25


B


4


7 t
B s^2

4


2 y
B z

4


81


B y

4


16


x

B


3


m^9
B q

3


x^6
y

-


B


3


6 x
y^2

-


B


3


2 p
B r^2

3


10


9


B


3


9


B^32


3


5


B^16


3


4


B^9


3


4


B^5


3


2


3


-


B


75 m^3
p

-


B


48 k^2
z

225 r
2 m^3

522 m
B 2 y^3

242 t^9
B u^11

288 x^7
y^9

-


B


98 r^3
s^5

-


B


150 m^5
n^3

- 4213


2 m

- 823


B 2 k

52


y

B


24


x

-


B


13


75


-


B


7


B^50


10


B^3


7


2


- 5


224


- 7


248


322


211


923


25


27


26


23


22


12


26


15


23


11


211


7


27


SECTION 8.5 Multiplying and Dividing Radical Expressions 465

Free download pdf