214 Vector and complex-number methods Ch. 11
Assumingq 1 =0 we have the pair of equations1
√
p^21 +q^21r−1
√
( 1 −p 1 )^2 +q^21s= 0 ,⎛
⎝ 1 +√ p^1
p^21 +q^21⎞
⎠r+⎛
⎝ 1 +√^1 −p^1
( 1 −p 1 )^2 +q^21⎞
⎠s= 2 |Z 2 ,Z 3 |. (11.6.8)We denote byD 1 the value of the determinant of coefficients on the left-hand side
∣∣
∣∣
∣
∣√^1
p^21 +q^21 −√^1
( 1 −p 1 )^2 +q^21
1 +√pp 21
1 +q^211 +√( 11 −−pp^1
1 )^2 +q^21∣∣
∣∣
∣
∣
and have
D 1 =
√
( 1 −p 1 )^2 +q^21 +√
p^21 +q^21 + 1
√
p^21 +q^21√
( 1 −p 1 )^2 +q^21.
We denote byD 2 the value of the determinant
∣∣
∣∣
∣∣0 −√( 1 −p^1
1 )^2 +q^21
2 |Z 2 ,Z 3 | 1 +√( 11 −−pp^1
1 )^2 +q^21∣∣
∣∣
∣∣
which has the value
D 2 =√^2 |Z^2 ,Z^3 |
( 1 −p 1 )^2 +q^21.
Then we have the solution
r=D 2
D 1
=
2 |Z 2 ,Z 3 |
√
p^21 +q^21
√
( 1 −p 1 )^2 +q^21√
p^21 +q^21 + 1.
Thus the point of intersection from this bisector is
z 2 +√
p^21 +q^21
√
( 1 −p 1 )^2 +q^21 +√
p^21 +q^21 + 1⎡
⎣ 1 +√p^1 +ıq^1
p^21 +q^21⎤
⎦(z 3 −z 2 ), (11.6.9)which is thus the incentreZ 15.