106 CHAPTER 3. FUZZY LOGIC FOR CONTROL
membership function:
ρA(δ)=
_
|x−y|≤δ
Ø
Ø
Øαxc−−ya
Ø
Ø
Ø ifa≤x,y≤c
Ø
Ø
Øαx(c−b)(−c−ya()(c−ca−)+b)ac−bc
Ø
Ø
Ø ifa≤x≤c≤y≤b
Ø
Ø
Øαx(c−a()c−−ya(c)(−cb−)+b)ac−bc
Ø
Ø
Ø ifa≤y≤c≤x≤b
Ø
Ø
Øαxc−−yb
Ø
Ø
Ø ifc≤x,y≤b
0 otherwise
≤
α
c−aδ ifa≤x≤c,a≤y≤c
α(b−a)
(c−a)(b−c)δ ifa≤x≤c≤y≤bora≤y≤c≤x≤b
α
b−cδ ifc≤x≤b,c≤y≤b
0 otherwise
Note thatc−αa andb−αcare the absolute values of the slopes of the triangular
function at the left and right ofc, respectively.
For the Gaussian functionsA(x)=e−
(x−c)^2
2 σ^2 , the sensitivity function is
ρA(δ)=
W
|x−y|≤δ
Ø
Ø
Ø
Øe
−(x−c)
2
2 σ^2 −e−
(y−c)^2
2 σ^2
Ø
Ø
Ø
Ø
and for the sigmoidal functions of the formf(x)=1+e−(^1 x−m)σ, the sensitivity
function is
ρf(δ)=
W
|x−y|≤δ
Ø
Ø
Ø
Ø
1
1+e−(x−m)σ
−
1
1+e−(y−m)σ
Ø
Ø
Ø
Ø
3.4.2 Averagesensitivity......................
An alternative to the measure above, of extreme sensitivity of fuzzy logical
connectives and membership functions, is a measure ofaverage sensitivity.
Letf:[a,b]→R. One measure of the sensitivity of differentiable functionsf
at a point in[a,b]is the squaref^0 (x)^2 of its derivative at that point. Its average
sensitivity is the average over all points in[a, b]off^0 (x)^2 , namely, the quantity
1
b−a
Zb
a
f^0 (x)^2 dx
Iffis a function of two variables, sayf:[a, b]^2 →R, the average sensitivity of
fis
S(f)=
1
(b−a)^2
Zb
a
Zb
a
√μ
∂
∂x
f(x,y)
∂ 2
+
μ
∂
∂y
f(x,y)
∂ 2!
dxdy