110 CHAPTER 3. FUZZY LOGIC FOR CONTROL
3.5.1 Productsoffuzzysets ....................
The (Cartesian)product of ordinary setsX 1 ,X 2 ,...,Xnis the set ofn-tuples
X 1 ◊X 2 ◊∑∑∑◊Xn=Yni=1Xi={(x 1 ,x 2 ,...,xn)|xi∈Xi}Theproduct of fuzzy setsAi:Xi→[0,1],i=1,...,n, is the fuzzy set
A:
Yni=1Xi→[0,1]defined by
A(x 1 ,x 2 ,...,xn)=A 1 (x 1 )∧∑∑∑∧An(xn)
Given rules
Ri:IfAi 1 andAi 2 and ... andAikthenBi,i=1, 2 ,...,nwhereAij:Xj→[0,1]andBi:Y→[0,1], interpreting ìandî as minimum, we
can represent these rules as
Ri:IfAithenBi,i=1, 2 ,...,nwhereAi=
Qn
j=1Aij:Qn
j=1Xj →[0,1]; so in a situation like this, we can
always assume that we have just one fuzzy setAifor eachi, with domain
X=
Qk
j=1Xjan ordinary product of sets. All of the models we describe allow
this simplification. A ruleRiis said tofireatxifAi(x) 6 =0,inotherwords,
ifxis in the support ofAi.
3.5.2 Mamdanimodel .......................
Given rules ìIfxisAithenyisBi,îi=1,...,nwherex=(x 1 ,x 2 ,...,xk),they
are combined in the Mamdani model as
R(x,y)=_ni=1(Ai(x)∧Bi(y))For eachk-tuplex=(x 1 ,x 2 ,...,xk)this gives a fuzzy setRxdefined by
Rx(y)=_ni=1Ai(x)∧Bi(y)Note that for the expanded set of rules
Ri:IfAi 1 andAi 2 and ... andAikthenBi,i=1, 2 ,...,nthis looks like
Rx(y)=R(x 1 ,x 2 ,...,xk,y)=_ni=1(Ai 1 (x 1 )∧Ai 2 (x 2 )∧∑∑∑∧Aik(xk)∧Bi(y))