112 CHAPTER 3. FUZZY LOGIC FOR CONTROL
Note that for the set of rulesRi:IfAi 1 andAi 2 and ... andAikthenBi,i=1, 2 ,...,nthis looks like
Rx(y)=R(x 1 ,x 2 ,...,xk,y)=_ni=1(Ai 1 (x 1 )∧Ai 2 (x 2 )∧∑∑∑∧Aik(xk))∑Bi(y)Example 3.7Take the fuzzy setsAiandBidefined in Equation 3.8.
00.20.40.60.81y0.5 1 1.5x 2 2.5 3A 1 andA 200.20.40.60.81y2 4 6 x 8 10 12 14B 1 andB 2At the pointx=1. 25 ,therulesìIfxisAithenyisBi,îi=1, 2 ,produce the
fuzzy set
00.20.40.60.81x(^2468) y 10 12 14 16
R 1. 25 (y)=(A 1 (1.25)∑B 1 (y))∨(A 2 (1.25)∑B 2 (y))
B 1 andB 2 (dotted lines)
3.5.4 Takagi-Sugeno-Kang(TSK)model .............
For the TSK model, rules are given in the form
Ri:Ifx 1 isAi 1 andx 2 isAi 2 and ... andxkisAik
thenfi(x 1 ,x 2 ,...,xk),i=1, 2 ,...,nor
Ri:IfxiisAithenfi(x),i=1, 2 ,...,n
wheref 1 ,f 2 ,...,fnare functionsX=X 1 ◊X 2 ◊∑∑∑◊Xk→RandAi=
Vk
j=1Aij.
These rules are combined to get a function
R(x)=A 1 (x)f 1 (x)+A 2 (x)f 2 (x)+∑∑∑+An(x)fn(x)
A 1 (x)+A 2 (x)+∑∑∑+An(x)Thus, this model produces a real-valued function.