3.6. TRUTH TABLES FOR FUZZY LOGIC 115
xyx∧yy^0 x∧y^0 qp
00 010 00
01 000 00
10 011 11
11 100 11
The fact thatqandphave the same truth values for every truth value ofxand
yreflects the well-known fact thatpandqare logically equivalent.
For fuzzy logic, it is a remarkable fact thatthree-valued truth tables can
be used for this purpose. Take truth values{ 0 ,u, 1 },where 0 is interpreted as
ìfalse,î 1 is interpreted as ìtrue,î anduas ìother.î For a fuzzy set, the truth
valueucorresponds to the case where the degree of membership, or the truth
value, is greater than 0 but less than 1. The corresponding truth tables are
∨ 0 u 1
0 0 u 1
u uu 1
1 111
∧ 0 u 1
0 000
u 0 uu
1 0 u 1
0
0 1
u u
1 0
These three-valued truth tables can also be used to determine equivalence of
logical expressions of fuzzy sets.
Example 3.10LetA,B:X→[0,1]be fuzzy sets and consider the expressions
p(x)=A(x)∧A^0 (x)
q(x)=(A(x)∧A^0 (x)∧B(x))∨(A(x)∧A^0 (x)∧B^0 (x))
whereA^0 (x)=1−A(x)andB^0 (x)=1−B(x).Alsolet
r(x)=A(x)∧A^0 (x)∧B(x)
s(x)=A(x)∧A^0 (x)∧B^0 (x)
so thatq(x)=r(x)∨s(x). To build a three-valued truth table for a fuzzy set
A:X→[0,1],enter 1 ifA(x)=1, 0 ifA(x)=0,anduotherwise. Likewise
withB:X→[0,1]. Then take all possible values in{ 0 ,u, 1 }forA(x)andB(x)
in thefirst two columns and evaluate the other expressions at those values.
A(x) B(x) A^0 (x) B^0 (x) p(x) r(x) s(x) q(x)
00110000
u 0 u 1 u 0 uu
10010000
0 u 1 u 0000
uuu u uuuu
1 u 0 u 0000
01100000
u 1 u 0 uu 0 u
11000000