A First Course in FUZZY and NEURAL CONTROL

(singke) #1
3.12. EXERCISES AND PROJECTS 129

ii.(A∩B)(x)=A(x)B(x)
iii.(A∩B)(x)=max{A(x)+B(x)− 1 , 0 }
(b) union:
i.(A∪B)(x)=A(x)∨B(x)
ii.(A∪B)(x)=A(x)+B(x)−A(x)B(x)
iii.(A∪B)(x)=min{A(x)+B(x), 1 }
(c) complement:
i.(X−A)(x)=1−A(x)
ii.(X−A)(x)=e−
lnA^1 (x)

iii.(X−A)(x)=(1−A(x)a)

(^1) a
fora> 0
iv.(X−A)(x)=
1 −A(x)
1+(a−1)A(x)
fora> 0



  1. Show that ordinary sets satisfy the De Morgan laws.


(a)X−(A∪B)=(X−A)∩(X−B)
(b) X−(A∩B)=(X−A)∪(X−B)


  1. LetAandBbe fuzzy subsets ofX. Show that minimum and maximum,
    with complementA^0 (x)=1−A(x), satisfy the De Morgan laws.


(a)(A∨B)^0 (x)=A^0 (x)∧B^0 (x)for allx∈[0,1]
(b) (A∧B)^0 (x)=A^0 (x)∨B^0 (x)for allx∈[0,1]


  1. LetAandBbe fuzzy subsets ofX. Show that the algebraic product
    (AB)(x)=A(x)B(x)and algebraic sum(A⊕B)(x)=A(x)+B(x)−
    AB(x), with the negationA^0 (x)=1−A(x)satisfy the De Morgan laws:


(a)(A⊕B)^0 (x)=(A^0 B^0 )(x)for allx∈[0,1]
(b) (AB)^0 (x)=(A^0 ⊕B^0 )(x)for allx∈[0,1]


  1. LetAandBbe fuzzy subsets ofX. Show that the bounded product
    (A 4 B)(x)=(A(x)+B(x)−1)∨ 0 and bounded sum(A 5 B)(x)=
    (A(x)+B(x))∧ 1 , with the negationA^0 (x)=1−A(x)satisfy the De
    Morgan laws:


(a)(A 4 B)^0 (x)=(A^05 B^0 )(x)for allx∈[0,1]
(b) (A 5 B)^0 (x)=(A^04 B^0 )(x)for allx∈[0,1]


  1. Show that any t-norm◦satisfies the following.


(a)x◦y≤x∧yfor everyx,y∈[0,1]
(b) x◦0=0for everyx∈[0,1]
Free download pdf