6.2. INVERSE DYNAMICS 203
x(k+3) = Ax(k+2)+Bu(k+2)
= A°
A^2 x(k)+ABu(k)+Bu(k+1)¢
+Bu(k+2)
= A^3 x(k)+A^2 Bu(k)+ABu(k+1)+Bu(k+2)x(k+4) = Ax(k+3)+Bu(k+3)
= A°
A^3 x(k)+A^2 Bu(k)+ABu(k+1)+Bu(k+2)¢
+Bu(k+3)
= A^4 x(k)+A^3 Bu(k)+A^2 Bu(k+1)+ABu(k+2)+Bu(k+3)andfinally
x(k+n)=Anx(k)+An−^1 Bu(k)+∑∑∑+ABu(k+n−2) +Bu(k+n−1)
= Anx(k)+WUwhere
W=
£
An−^1 BAn−^2 B ∑∑∑ A^2 BABB§
is then◊ncontrollability matrix discussed in Section 2.3, and
U=£
u(k) u(k+1) ∑∑∑ u(k+n−2) u(k+n−1)§T
If the matrixWis nonsingular, we can computeUdirectly fromWandx:
U = W−^1 (x(k+n)−Anx(k))
= φ(x(k),x(k+n))This is a control law for the system that is derived directly from the plant
dynamics by computing the inverse dynamics.
Example 6.1TakeA=
010
001
− 5 − 2 − 3
andB=
0
0
9
. ThenW=
£
A^2 BABB
§
=
900
−27 9 0
63 −27 9
and
U =
1
9 00
1
31
9 0
2
91
31
9
x(k+3)−
− 5 − 2 − 3
15 1 7
−35 1 − 20
x(k)
=
1
9 00
1
31
9 0
2
91
31
9
x(k+3)−
−^59 −^29 −^13
0 −^59 −^29
00 −^59
x(k)=
1
9 x^1 (k+3)+5
9 x^1 (k)+2
9 x^2 (k)+1
3 x^3 (k)
1
3 x^1 (k+3)+1
9 x^2 (k+3)+5
9 x^2 (k)+2
9 x^3 (k)
2
9 x^1 (k+3)+1
3 x^2 (k+3n)+1
9 x^3 (k+3)+5
9 x^3 (k)
= φ(x(k),x(k+n))