3.2. FUZZY SETS IN CONTROL 89
TheGaussian functions, the familiar bell-shaped curve, are of the formA(x)=e−(x−c)^2
2 σ^2These are related to the well-known normal or Gaussian distributions in prob-
ability and have useful mathematical properties.
00.5yGaussiane−x 2200.5yGaussiane−(x−5)^2
25The parameterscandσdetermine the center and the shape of the curve, respec-
tively. The valuesc=0andσ=1define thestandard Gaussian membership
functione−
x 22
, centered atc=0, and with area under the curve equal to
√
2 π.
This is the Gaussian curve depicted on the left above.
A Cauchy function, orgeneralized bell curve,isgivenbyfunctionsofthe
formA(x)=1/
≥
1+
Ø
Øx−c
aØ
Ø^2 b¥
. The parametercdetermines the center of the
curve, andaandbdetermine its shape.
0.20.40.60.8-4 -2 0 2 x 4 6
1.≥
1+
Ø
Øx−^1
2Ø
Ø^2
¥
0.20.40.60.8-200 (^0200) x 400
1
.≥
1+
Ø
Øx−^100
2Ø
Ø^1 /^2
¥
00.20.40.60.8-2-1 (^1234) x
1
.≥
1+
Ø
Øx−^1
2Ø
Ø^200
¥
00.20.40.60.8-1500 -1000 -500 500 x 1000 1500
1.≥
1+
Ø
Øx−^1
200Ø
Ø^2
¥
The S- and Z-functions aresigmoidal functionsof the formA(x)=1
1+e−(x−m)σ0y0.5S-function1+e^1 −x+10y0.5Z-function1+e^1 x− 1