Transposing formulae 87
Taking the cube root of both sides gives
√ 3
r^3 =^3
√(
3 V
2 π
)
i.e. r=^3
√(
3 V
2 π
)
(b) WhenV=32cm^3 ,
radiusr=^3
√(
3 V
2 π
)
=^3
√(
3 × 32
2 π
)
=2.48cm.
Now try the following Practice Exercise
PracticeExercise 47 Further transposing
formulae (answers on page 345)
Make the symbol indicated the subject of each of
theformulaeshowninproblems1to13andexpress
each in its simplest form.
- S=
a
1 −r
(r)
- y=
λ(x−d)
d
(x)
- A=
3 (F−f)
L
(f)
- y=
AB^2
5 CD
(D)
- R=R 0 ( 1 +αt)(t)
6.
1
R
=
1
R 1
+
1
R 2
(R 2 )
- I=
E−e
R+r
(R)
- y= 4 ab^2 c^2 (b)
9.
a^2
x^2
+
b^2
y^2
= 1 (x)
- t= 2 π
√
L
g
(L)
- v^2 =u^2 + 2 as (u)
- A=
πR^2 θ
360
(R)
- N=
√(
a+x
y
)
(a)
- TransposeZ=
√
R^2 +( 2 πfL)^2 forLand
evaluateLwhenZ= 27. 82 ,R= 11 .76 and
f=50.
12.4 More difficult transposing of formulae
Here are some more transposition examples to help
us further understand how more difficult formulae are
transposed.
Problem 18. (a) TransposeS=
√
3 d(L−d)
8
to
makelthe subject. (b) EvaluateLwhend= 1. 65
andS= 0. 82
The formulaS=
√
3 d(L−d)
8
represents the sagSat
the centre of a wire.
(a) Squaring both sides gives S^2 =
3 d(L−d)
8
Multiplying both sides by 8 gives
8 S^2 = 3 d(L−d)
Dividing both sides by 3dgives
8 S^2
3 d
=L−d
Rearranging gives L=d+
8 S^2
3 d
(b) Whend= 1 .65 andS= 0 .82,
L=d+
8 S^2
3 d
= 1. 65 +
8 × 0. 822
3 × 1. 65
= 2. 737
Problem 19. Transpose the formula
p=
a^2 x^2 +a^2 y
r
to makeathe subject
Rearranging gives
a^2 x^2 +a^2 y
r
=p
Multiplying both sides byrgives
a^2 x+a^2 y=rp
Factorizing the LHS gives a^2 (x+y)=rp
Dividing both sides by(x+y)gives
a^2 (x+y)
(x+y)
=
rp
(x+y)