Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

Transposing formulae 87


Taking the cube root of both sides gives

√ 3
r^3 =^3

√(
3 V
2 π

)

i.e. r=^3

√(
3 V
2 π

)

(b) WhenV=32cm^3 ,


radiusr=^3

√(
3 V
2 π

)
=^3

√(
3 × 32
2 π

)
=2.48cm.

Now try the following Practice Exercise


PracticeExercise 47 Further transposing
formulae (answers on page 345)

Make the symbol indicated the subject of each of
theformulaeshowninproblems1to13andexpress
each in its simplest form.


  1. S=


a
1 −r

(r)


  1. y=


λ(x−d)
d

(x)


  1. A=


3 (F−f)
L

(f)


  1. y=


AB^2
5 CD

(D)


  1. R=R 0 ( 1 +αt)(t)


6.

1
R

=

1
R 1

+

1
R 2

(R 2 )


  1. I=


E−e
R+r

(R)


  1. y= 4 ab^2 c^2 (b)


9.

a^2
x^2

+

b^2
y^2

= 1 (x)


  1. t= 2 π



L
g

(L)


  1. v^2 =u^2 + 2 as (u)

  2. A=


πR^2 θ
360

(R)


  1. N=


√(
a+x
y

)
(a)


  1. TransposeZ=



R^2 +( 2 πfL)^2 forLand
evaluateLwhenZ= 27. 82 ,R= 11 .76 and
f=50.

12.4 More difficult transposing of formulae

Here are some more transposition examples to help
us further understand how more difficult formulae are
transposed.

Problem 18. (a) TransposeS=


3 d(L−d)
8

to
makelthe subject. (b) EvaluateLwhend= 1. 65
andS= 0. 82

The formulaS=


3 d(L−d)
8

represents the sagSat
the centre of a wire.

(a) Squaring both sides gives S^2 =

3 d(L−d)
8
Multiplying both sides by 8 gives

8 S^2 = 3 d(L−d)

Dividing both sides by 3dgives

8 S^2
3 d

=L−d

Rearranging gives L=d+
8 S^2
3 d
(b) Whend= 1 .65 andS= 0 .82,

L=d+

8 S^2
3 d

= 1. 65 +

8 × 0. 822
3 × 1. 65

= 2. 737

Problem 19. Transpose the formula

p=

a^2 x^2 +a^2 y
r

to makeathe subject

Rearranging gives
a^2 x^2 +a^2 y
r

=p

Multiplying both sides byrgives

a^2 x+a^2 y=rp

Factorizing the LHS gives a^2 (x+y)=rp

Dividing both sides by(x+y)gives
a^2 (x+y)
(x+y)

=

rp
(x+y)
Free download pdf