Transposing formulae 87
Taking the cube root of both sides gives√ 3
r^3 =^3√(
3 V
2 π)i.e. r=^3√(
3 V
2 π)(b) WhenV=32cm^3 ,
radiusr=^3√(
3 V
2 π)
=^3√(
3 × 32
2 π)
=2.48cm.Now try the following Practice Exercise
PracticeExercise 47 Further transposing
formulae (answers on page 345)Make the symbol indicated the subject of each of
theformulaeshowninproblems1to13andexpress
each in its simplest form.- S=
a
1 −r(r)- y=
λ(x−d)
d(x)- A=
3 (F−f)
L(f)- y=
AB^2
5 CD(D)- R=R 0 ( 1 +αt)(t)
6.1
R=1
R 1+1
R 2(R 2 )- I=
E−e
R+r(R)- y= 4 ab^2 c^2 (b)
9.a^2
x^2+b^2
y^2= 1 (x)- t= 2 π
√
L
g(L)- v^2 =u^2 + 2 as (u)
- A=
πR^2 θ
360(R)- N=
√(
a+x
y)
(a)- TransposeZ=
√
R^2 +( 2 πfL)^2 forLand
evaluateLwhenZ= 27. 82 ,R= 11 .76 and
f=50.12.4 More difficult transposing of formulae
Here are some more transposition examples to help
us further understand how more difficult formulae are
transposed.Problem 18. (a) TransposeS=√
3 d(L−d)
8to
makelthe subject. (b) EvaluateLwhend= 1. 65
andS= 0. 82The formulaS=√
3 d(L−d)
8represents the sagSat
the centre of a wire.(a) Squaring both sides gives S^2 =3 d(L−d)
8
Multiplying both sides by 8 gives8 S^2 = 3 d(L−d)Dividing both sides by 3dgives8 S^2
3 d=L−dRearranging gives L=d+
8 S^2
3 d
(b) Whend= 1 .65 andS= 0 .82,L=d+8 S^2
3 d= 1. 65 +8 × 0. 822
3 × 1. 65= 2. 737Problem 19. Transpose the formulap=a^2 x^2 +a^2 y
rto makeathe subjectRearranging gives
a^2 x^2 +a^2 y
r=pMultiplying both sides byrgivesa^2 x+a^2 y=rpFactorizing the LHS gives a^2 (x+y)=rpDividing both sides by(x+y)gives
a^2 (x+y)
(x+y)=rp
(x+y)