98 Basic Engineering Mathematics
Substitutings=42 andt=2intos=ut+1
2at^2 gives42 = 2 u+1
2a( 2 )^2i.e. 42 = 2 u+ 2 a (1)Substitutings=144 andt=4intos=ut+1
2at^2
gives144 = 4 u+1
2a( 4 )^2i.e. 144 = 4 u+ 8 a (2)Multiplying equation (1) by 2 gives84 = 4 u+ 4 a (3)Subtracting equation (3) from equation (2) gives60 = 0 + 4 aand a=^60
4= 15Substitutinga=15 into equation (1) gives42 = 2 u+ 2 ( 15 )
42 − 30 = 2 uu=12
2= 6Substitutinga=15 andu=6 in equation (2) givesRHS= 4 ( 6 )+ 8 ( 15 )= 24 + 120 = 144 =LHSHence,the initial velocityu=6 m/s and the acceler-
ationa=15m/s^2.Distance travelled after 3s is given bys=ut+1
2at^2
wheret= 3 ,u=6anda=15.Hence,s=( 6 )( 3 )+1
2( 15 )( 3 )^2 = 18 + 67. 5
i.e.distance travelled after 3s= 85 .5m.Problem 16. The resistanceRof a length of
wire att◦CisgivenbyR=R 0 ( 1 +αt),whereR 0
is the resistance at 0◦Candαis the temperature
coefficient of resistance in /◦C. Find the values ofα
andR 0 ifR= 30 at 50◦CandR= 35 at 100◦CSubstitutingR=30 andt=50 intoR=R 0 ( 1 +αt)
gives30 =R 0 ( 1 + 50 α) (1)SubstitutingR=35 andt=100 intoR=R 0 ( 1 +αt)
gives35 =R 0 ( 1 + 100 α) (2)Although these equations may be solved by the conven-
tional substitutionmethod, an easier way is to eliminate
R 0 by division. Thus, dividing equation (1) by equation
(2) gives30
35=R 0 ( 1 + 50 α)
R 0 ( 1 + 100 α)=1 + 50 α
1 + 100 αCross-multiplying gives30 ( 1 + 100 α)= 35 ( 1 + 50 α)
30 + 3000 α= 35 + 1750 α
3000 α− 1750 α= 35 − 30
1250 α= 5i.e. α=^5
1250=1
250or 0. 004Substitutingα=1
250into equation (1) gives30 =R 0{
1 +( 50 )(
1
250)}30 =R 0 ( 1. 2 )R 0 =30
1. 2= 25Checking, substitutingα=1
250andR 0 =25 in equa-
tion (2), givesRHS= 25{
1 +( 100 )(
1
250)}= 25 ( 1. 4 )= 35 =LHSThus, the solution isα= 0. 004 /◦CandR 0 = 25 .Problem 17. The molar heat capacity of a solid
compound is given by the equationc=a+bT,
whereaandbare constants. Whenc= 52 ,T= 100
and whenc= 172 ,T=400. Determine the values
ofaandb