98 Basic Engineering Mathematics
Substitutings=42 andt=2intos=ut+
1
2
at^2 gives
42 = 2 u+
1
2
a( 2 )^2
i.e. 42 = 2 u+ 2 a (1)
Substitutings=144 andt=4intos=ut+
1
2
at^2
gives
144 = 4 u+
1
2
a( 4 )^2
i.e. 144 = 4 u+ 8 a (2)
Multiplying equation (1) by 2 gives
84 = 4 u+ 4 a (3)
Subtracting equation (3) from equation (2) gives
60 = 0 + 4 a
and a=^60
4
= 15
Substitutinga=15 into equation (1) gives
42 = 2 u+ 2 ( 15 )
42 − 30 = 2 u
u=
12
2
= 6
Substitutinga=15 andu=6 in equation (2) gives
RHS= 4 ( 6 )+ 8 ( 15 )= 24 + 120 = 144 =LHS
Hence,the initial velocityu=6 m/s and the acceler-
ationa=15m/s^2.
Distance travelled after 3s is given bys=ut+
1
2
at^2
wheret= 3 ,u=6anda=15.
Hence,s=( 6 )( 3 )+
1
2
( 15 )( 3 )^2 = 18 + 67. 5
i.e.distance travelled after 3s= 85 .5m.
Problem 16. The resistanceRof a length of
wire att◦CisgivenbyR=R 0 ( 1 +αt),whereR 0
is the resistance at 0◦Candαis the temperature
coefficient of resistance in /◦C. Find the values ofα
andR 0 ifR= 30 at 50◦CandR= 35 at 100◦C
SubstitutingR=30 andt=50 intoR=R 0 ( 1 +αt)
gives
30 =R 0 ( 1 + 50 α) (1)
SubstitutingR=35 andt=100 intoR=R 0 ( 1 +αt)
gives
35 =R 0 ( 1 + 100 α) (2)
Although these equations may be solved by the conven-
tional substitutionmethod, an easier way is to eliminate
R 0 by division. Thus, dividing equation (1) by equation
(2) gives
30
35
=
R 0 ( 1 + 50 α)
R 0 ( 1 + 100 α)
=
1 + 50 α
1 + 100 α
Cross-multiplying gives
30 ( 1 + 100 α)= 35 ( 1 + 50 α)
30 + 3000 α= 35 + 1750 α
3000 α− 1750 α= 35 − 30
1250 α= 5
i.e. α=^5
1250
=
1
250
or 0. 004
Substitutingα=
1
250
into equation (1) gives
30 =R 0
{
1 +( 50 )
(
1
250
)}
30 =R 0 ( 1. 2 )
R 0 =
30
1. 2
= 25
Checking, substitutingα=
1
250
andR 0 =25 in equa-
tion (2), gives
RHS= 25
{
1 +( 100 )
(
1
250
)}
= 25 ( 1. 4 )= 35 =LHS
Thus, the solution isα= 0. 004 /◦CandR 0 = 25 .
Problem 17. The molar heat capacity of a solid
compound is given by the equationc=a+bT,
whereaandbare constants. Whenc= 52 ,T= 100
and whenc= 172 ,T=400. Determine the values
ofaandb