Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

98 Basic Engineering Mathematics


Substitutings=42 andt=2intos=ut+

1
2

at^2 gives

42 = 2 u+

1
2

a( 2 )^2

i.e. 42 = 2 u+ 2 a (1)

Substitutings=144 andt=4intos=ut+

1
2

at^2
gives

144 = 4 u+

1
2

a( 4 )^2

i.e. 144 = 4 u+ 8 a (2)

Multiplying equation (1) by 2 gives

84 = 4 u+ 4 a (3)

Subtracting equation (3) from equation (2) gives

60 = 0 + 4 a

and a=^60
4

= 15

Substitutinga=15 into equation (1) gives

42 = 2 u+ 2 ( 15 )
42 − 30 = 2 u

u=

12
2

= 6

Substitutinga=15 andu=6 in equation (2) gives

RHS= 4 ( 6 )+ 8 ( 15 )= 24 + 120 = 144 =LHS

Hence,the initial velocityu=6 m/s and the acceler-
ationa=15m/s^2.

Distance travelled after 3s is given bys=ut+

1
2

at^2
wheret= 3 ,u=6anda=15.

Hence,s=( 6 )( 3 )+

1
2

( 15 )( 3 )^2 = 18 + 67. 5
i.e.distance travelled after 3s= 85 .5m.

Problem 16. The resistanceRof a length of
wire att◦CisgivenbyR=R 0 ( 1 +αt),whereR 0
is the resistance at 0◦Candαis the temperature
coefficient of resistance in /◦C. Find the values ofα
andR 0 ifR= 30 at 50◦CandR= 35 at 100◦C

SubstitutingR=30 andt=50 intoR=R 0 ( 1 +αt)
gives

30 =R 0 ( 1 + 50 α) (1)

SubstitutingR=35 andt=100 intoR=R 0 ( 1 +αt)
gives

35 =R 0 ( 1 + 100 α) (2)

Although these equations may be solved by the conven-
tional substitutionmethod, an easier way is to eliminate
R 0 by division. Thus, dividing equation (1) by equation
(2) gives

30
35

=

R 0 ( 1 + 50 α)
R 0 ( 1 + 100 α)

=

1 + 50 α
1 + 100 α

Cross-multiplying gives

30 ( 1 + 100 α)= 35 ( 1 + 50 α)
30 + 3000 α= 35 + 1750 α
3000 α− 1750 α= 35 − 30
1250 α= 5

i.e. α=^5
1250

=

1
250

or 0. 004

Substitutingα=

1
250

into equation (1) gives

30 =R 0

{
1 +( 50 )

(
1
250

)}

30 =R 0 ( 1. 2 )

R 0 =

30
1. 2

= 25

Checking, substitutingα=

1
250

andR 0 =25 in equa-
tion (2), gives

RHS= 25

{
1 +( 100 )

(
1
250

)}

= 25 ( 1. 4 )= 35 =LHS

Thus, the solution isα= 0. 004 /◦CandR 0 = 25 .

Problem 17. The molar heat capacity of a solid
compound is given by the equationc=a+bT,
whereaandbare constants. Whenc= 52 ,T= 100
and whenc= 172 ,T=400. Determine the values
ofaandb
Free download pdf