112 Basic Engineering Mathematics
Here are some worked problems to help understand-
ing of logarithms.Problem 1. Evaluate log 39Letx=log 3 9then3x=9 from the definition of
a logarithm,
i.e. 3 x= 32 , from whichx= 2
Hence, log 39 = 2Problem 2. Evaluate log 1010Letx=log 10 10 then 10x=10 from the definition
of a logarithm,
i.e. 10 x= 101 , from whichx= 1
Hence, log 1010 = 1 (which may be checked
using a calculator).Problem 3. Evaluate log 168Letx=log 16 8then16x=8 from the definition
of a logarithm,
i.e. ( 24 )x= 23 i.e. 2^4 x= 23 from the laws
of indices,from which, 4 x=3andx=3
4
Hence, log 168 =3
4Problem 4. Evaluate lg0. 001Letx=lg0. 001 =log 100 .001 then 10x= 0. 001
i.e. 10 x= 10 −^3
from which,x=− 3
Hence, lg 0. 001 =− 3 (which may be checked
using a calculator)Problem 5. Evaluate lneLetx=lne=logee then ex=e
i.e. ex=e^1 , from which
x= 1
Hence, lne= 1 (which may be checked
by a calculator)Problem 6. Evaluate log 31
81Letx=log 31
81then 3x=1
81=1
34= 3 −^4
from whichx=− 4Hence, log 31
81=− 4Problem 7. Solve the equation lgx= 3If lgx=3 then log 10 x= 3
and x= 103 i.e.x= 1000Problem 8. Solve the equation log 2 x= 5If log 2 x=5thenx= 25 = 32Problem 9. Solve the equation log 5 x=− 2If log 5 x=−2thenx= 5 −^2 =1
52=1
25Now try the following Practice ExercisePracticeExercise 59 Lawsof logarithms
(answers on page 346)Inproblems1to11,evaluatethegivenexpressions.- log 1010000 2. log 2 16 3. log 5125
- log 2
1
8- log 8 26.log 7343
- lg 100 8. lg 0.01 9. log 48
- log 273 11. lne^2
In problems 12 to 18, solve the equations.- log 10 x= 4 13. lgx= 5
- log 3 x= 2 15. log 4 x=− 2
1
2- lgx=− 2 17. log 8 x=−
4
3- lnx= 3