Logarithms 117
y0.50 1232 0.52 1.0x
x 3
0.482
0.301
00.5
2 0.300.2
2 0.700.1
y 5 log 10 x 2 1.0Figure 15.1
Hence,logaa= 1. (Check with a calculator that
log 1010 =1andlogee=1.)(c) loga 0 →−∞
Let loga 0 =xthenax=0 from the definition of a
logarithm.
y
210 123456 xx 6 5 4 3 2 1 0.5 0.2 0.1
1.79 1.61 1.39 1.10 0.69 0 2 0.69 2 1.61 2 2.302122y 5 logexFigure 15.2Ifax=0, and a is a positive real number, then
x must approach minus infinity. (For example,
check with a calculator, 2−^2 = 0. 25 , 2 −^20 =
9. 54 × 10 −^7 , 2 −^200 = 6. 22 × 10 −^61 , and so on.)
Hence,loga 0 →−∞