124 Basic Engineering Mathematics
Taking natural logs of both sides givesln7
4=lne^3 xln7
4= 3 xlneSincelne=^1 , ln7
4= 3 xi.e. 0. 55962 = 3 xi.e. x=0.1865,
correct to 4 significant figures.Problem 16. Solveex−^1 = 2 e^3 x−^4 correct to 4
significant figuresTaking natural logarithms of both sides givesln(
ex−^1)
=ln(
2 e^3 x−^4)and by the first law of logarithms,ln(
ex−^1)
=ln2+ln(
e^3 x−^4)i.e. x− 1 =ln2+ 3 x− 4Rearranging gives
4 − 1 −ln2= 3 x−xi.e. 3 −ln2= 2 xfrom which, x=3 −ln2
2=1.153Problem 17. Solve, correct to 4 significant
figures, ln(x− 2 )^2 =ln(x− 2 )−ln(x+ 3 )+ 1. 6Rearranging givesln(x− 2 )^2 −ln(x− 2 )+ln(x+ 3 )= 1. 6and by the laws of logarithms,ln{
(x− 2 )^2 (x+ 3 )
(x− 2 )}
= 1. 6Cancelling givesln{(x− 2 )(x+ 3 )}= 1. 6and (x− 2 )(x+ 3 )=e^1.^6i.e. x^2 +x− 6 =e^1.^6
or x^2 +x− 6 −e^1.^6 = 0i.e. x^2 +x− 10. 953 = 0Using the quadratic formula,x=− 1 ±√
12 − 4 ( 1 )(− 10. 953 )
2=− 1 ±√
44. 812
2=− 1 ± 6. 6942
2
i.e. x= 2 .847 or− 3. 8471x=− 3 .8471 is not valid since the logarithm of a
negative number has no real root.
Hence,the solution of the equation isx=2.847Now try the following Practice ExercisePracticeExercise 65 Evaluating Napierian
logarithms (answers on page 347)In problems 1 and 2, evaluate correct to 5 signifi-
cant figures.- (a)
1
3ln5. 2932 (b)ln82. 473
4. 829(c)5 .62ln321. 62
e^1.^2942- (a)
1 .786lne^1.^76
lg10^1.^41
(b)5 e−^0.^1629
2ln0. 00165(c)ln4. 8629 −ln2. 4711
5. 173In problems 3 to 16, solve the given equations, each
correct to 4 significant figures.
- 5 = 4 e^2 t
- 83 = 2. 91 e−^1.^7 x
- 16= 24
(
1 −e−t
2)
- 17 =ln
(
x
4. 64)- 3.72ln
(
1. 59
x)
= 2. 43- lnx= 2. 40
- 24+e^2 x= 45
- 5=ex+^1 − 7