138 Basic Engineering Mathematics
(d) Ify=− 5 x−3, then (i)gradient=− 5
(ii)y-axis intercept=− 3
(e) If y=6i.e.y= 0 x+6,
then (i)gradient= 0
(ii)y-axis intercept= 6
i.e.y=6 is a straight horizontal line.
(f) Ify=xi.e.y= 1 x+0,
then (i)gradient= 1
(ii)y-axis intercept= 0
Sincey=x,asxincreases,yincreases by the same
amount; i.e.,yis directly proportional tox.
Problem 6. Without drawing graphs, determine
the gradient andy-axis intercept for each of the
following equations.
(a)y+ 4 = 3 x (b) 2y+ 8 x=6(c)3x= 4 y+ 7
If y=mx+c then m=gradient and c=y-axis
intercept.
(a) Transposingy+ 4 = 3 xgives y= 3 x− 4
Hence,gradient= 3 andy-axis intercept=− 4.
(b) Transposing 2y+ 8 x=6gives 2y=− 8 x+ 6
Dividing both sides by 2 gives y=− 4 x+ 3
Hence,gradient=− 4 andy-axis intercept= 3.
(c) Transposing 3x= 4 y+7gives3x− 7 = 4 y
or 4 y= 3 x− 7
Dividing both sides by 4 gives y=
3
4
x−
7
4
or y= 0. 75 x− 1. 75
Hence,gradient =0.75and y-axis intercept
=− 1. 75
Problem 7. Without plotting graphs, determine
the gradient andy-axis intercept values of the
following equations.
(a)y= 7 x−3(b)3y=− 6 x+ 2
(c)y− 2 = 4 x+9(d)
y
3
=
x
3
−
1
5
(e) 2x+ 9 y+ 1 = 0
(a) y= 7 x−3 is of the formy=mx+c
Hence,gradient,m= 7 andy-axis intercept,
c=− 3.
(b) Rearranging 3y=− 6 x+2gives y=−
6 x
3
+
2
3
,
i.e. y=− 2 x+
2
which is of the formy=mx+c^3
Hence,gradientm=− 2 andy-axis intercept,
c=
2
3
(c) Rearrangingy− 2 = 4 x+9givesy= 4 x+11.
Hence,gradient= 4 andy-axis intercept= 11.
(d) Rearranging
y
3
=
x
2
−
1
5
gives y= 3
(
x
2
−
1
5
)
=
3
2
x−
3
5
Hence,gradient=
3
2
and
y-axis intercept=−
3
5
(e) Rearranging 2x+ 9 y+ 1 =0gives9y=− 2 x−1,
i.e. y=−
2
9
x−
1
9
Hence,gradient=−
2
9
and
y-axis intercept=−
1
9
Problem 8. Determine for the straight line shown
in Figure 17.12 (a) the gradient and (b) the equation
of the graph
23
20
24 23 220
15
10
8
5
25
210
215
220
y
21 1342 x
Figure 17.12
(a) A right-angled triangleABCis constructed on the
graph as shown in Figure 17.13.
Gradient=
AC
CB
=
23 − 8
4 − 1
=
15
3
= 5