Angles and triangles 177
508708c 5 12.0cmB
a CA508
608f 5 5.0cmd 5 4.42cmE FDFigure 20.39In triangleABC, 50 ◦+ 70 ◦+∠C= 180 ◦, from which
∠C= 60 ◦.
In triangle DEF,∠E= 180 ◦− 50 ◦− 60 ◦= 70 ◦.
Hence, trianglesABCandDEFare similar, since their
angles are the same. Since corresponding sides are in
proportion toeach other,
a
d=c
fi.e.a
4. 42=12. 0
5. 0Hence,side,a=
12. 0
5. 0( 4. 42 )= 10 .61cm.Problem 27. In Figure 20.40, find the dimensions
markedrandp558358x 5 7.44cmq 5 6.82cm z5
12.97cmy^5 10.63cmYP QRZXprFigure 20.40In trianglePQR,∠Q= 180 ◦− 90 ◦− 35 ◦= 55 ◦.
In triangleXYZ,∠X= 180 ◦− 90 ◦− 55 ◦= 35 ◦.
Hence, trianglesPQRandZYXare similar since their
angles are the same. The triangles may he redrawn as
shown in Figure 20.41.
358558q 5 6.82cm y 5 10.63cmx^57.44cmz 5
12.97cmZ XY358558PRr pQFigure 20.41
By proportion:
p
z=
r
x=
q
yi.e.p
12. 97=r
7. 44=6. 82
10. 63from which, r= 7. 44(
6. 82
10. 63)
= 4 .77cmBy proportion:p
z=q
yi.e.p
12. 97=6. 82
10. 63Hence, p= 12. 97(
6. 82
10. 63)
= 8 .32cmProblem 28. In Figure 20.42, show that triangles
CBDandCAEare similar and hence find the length
ofCDandBDB106912C
D
EAFigure 20.42SinceBDis parallel toAEthen∠CBD=∠CAEand
∠CDB=∠CEA(corresponding angles between paral-
lel lines). Also,∠Cis common to trianglesCBDand
CAE.
Since the angles in triangleCBDare the same as in
triangleCAE, the triangles are similar. Hence,by proportion:CB
CA=CD
CE(
=BD
AE)i.e.
9
6 + 9=
CD
12,from whichCD= 12(
9
15)
= 7 .2cmAlso,9
15=BD
10,from whichBD= 10(
9
15)
=6cm