Introduction to trigonometry 189
cos38◦=
QR
PR
=
7. 5
PR
,hence
PR=
7. 5
cos38◦
=
7. 5
0. 7880
=9.518cm
Check: using Pythagoras’ theorem,
( 7. 5 )^2 +( 5. 860 )^2 = 90. 59 =( 9. 518 )^2.
Problem 21. Solve the triangleABCshown in
Figure 21.22
A
C
B
37mm
35mm
Figure 21.22
To ‘solve the triangleABC’ means ‘to find the length
AC and anglesBandC’.
sinC=
35
37
= 0. 94595 ,hence
C=sin−^10. 94595 = 71. 08 ◦
B= 180 ◦− 90 ◦− 71. 08 ◦= 18. 92 ◦(sincetheangles in
a triangle add up to 180◦)
sinB=
AC
37
,hence
AC=37sin18. 92 ◦= 37 ( 0. 3242 )=12.0mm
or, using Pythagoras’ theorem, 37^2 = 352 +AC^2 , from
whichAC=
√
( 372 − 352 )=12.0mm.
Problem 22. Solve triangleXY Zgiven
∠X= 90 ◦,∠Y= 23 ◦ 17 ′andYZ= 20 .0mm
It is always advisable to make a reasonably accurate
sketch so as to visualize the expected magnitudes of
unknown sides and angles. Such a sketch is shown in
Figure 21.23.
∠Z= 180 ◦− 90 ◦− 23 ◦ 17 ′= 66 ◦ 43 ′
X Y
Z
20.0mm
238179
Figure 21.23
sin23◦ 17 ′=
XZ
20. 0
,henceXZ= 20 .0sin23◦ 17 ′
= 20. 0 ( 0. 3953 )= 7 .906mm
cos23◦ 17 ′=
XY
20. 0
,henceXY= 20 .0cos23◦ 17 ′
= 20. 0 ( 0. 9186 )=18.37mm
Check: using Pythagoras’ theorem,
( 18. 37 )^2 +( 7. 906 )^2 = 400. 0 =( 20. 0 )^2 ,
Now try the following Practice Exercise
PracticeExercise 85 Solving right-angled
triangles (answers on page 349)
- Calculate the dimensions shown as x in
Figures 21.24(a) to (f), each correct to 4
significant figures.
298
x
(c)
17.0
708
228
x
13.0
(a)
(b)
x
15.0
Figure 21.24