Introduction to trigonometry 189
cos38◦=QR
PR=7. 5
PR,hencePR=7. 5
cos38◦=7. 5
0. 7880=9.518cmCheck: using Pythagoras’ theorem,
( 7. 5 )^2 +( 5. 860 )^2 = 90. 59 =( 9. 518 )^2.
Problem 21. Solve the triangleABCshown in
Figure 21.22ACB37mm35mmFigure 21.22To ‘solve the triangleABC’ means ‘to find the length
AC and anglesBandC’.
sinC=35
37= 0. 94595 ,henceC=sin−^10. 94595 = 71. 08 ◦B= 180 ◦− 90 ◦− 71. 08 ◦= 18. 92 ◦(sincetheangles in
a triangle add up to 180◦)
sinB=AC
37,henceAC=37sin18. 92 ◦= 37 ( 0. 3242 )=12.0mmor, using Pythagoras’ theorem, 37^2 = 352 +AC^2 , from
whichAC=
√
( 372 − 352 )=12.0mm.Problem 22. Solve triangleXY Zgiven
∠X= 90 ◦,∠Y= 23 ◦ 17 ′andYZ= 20 .0mmIt is always advisable to make a reasonably accurate
sketch so as to visualize the expected magnitudes of
unknown sides and angles. Such a sketch is shown in
Figure 21.23.
∠Z= 180 ◦− 90 ◦− 23 ◦ 17 ′= 66 ◦ 43 ′X YZ
20.0mm238179Figure 21.23
sin23◦ 17 ′=XZ
20. 0,henceXZ= 20 .0sin23◦ 17 ′= 20. 0 ( 0. 3953 )= 7 .906mmcos23◦ 17 ′=XY
20. 0,henceXY= 20 .0cos23◦ 17 ′= 20. 0 ( 0. 9186 )=18.37mm
Check: using Pythagoras’ theorem,
( 18. 37 )^2 +( 7. 906 )^2 = 400. 0 =( 20. 0 )^2 ,Now try the following Practice ExercisePracticeExercise 85 Solving right-angled
triangles (answers on page 349)- Calculate the dimensions shown as x in
Figures 21.24(a) to (f), each correct to 4
significant figures.
298
x(c)17.0708228x13.0
(a)(b)x15.0Figure 21.24