206 Basic Engineering Mathematics
or (b)1
2absinCor1
2acsinBor1
2bcsinAor (c)√
[s(s−a)(s−b)(s−c)]wheres=a+b+c
223.3 Worked problems on the solution
of triangles and their areas
Problem 1. In a triangleXYZ,∠X= 51 ◦,
∠Y= 67 ◦andYZ= 15 .2cm. Solve the triangle and
find its areaThe triangleXYZis shown in Figure 23.2. Solving the
triangle means finding∠Zand sidesXZandXY.XY x 5 15.2cm Zz y518678Figure 23.2Since the angles in a triangle add up to 180◦,
Z= 180 ◦− 51 ◦− 67 ◦= 62 ◦Applying the sine rule,
15. 2
sin51◦=y
sin67◦
=z
sin62◦Using
15. 2
sin51◦=y
sin67◦and transposing gives y=
15 .2sin67◦
sin51◦
= 18 .00cm=XZUsing15. 2
sin51◦=z
sin62◦and transposing gives z=
15 .2sin62◦
sin51◦
= 17 .27cm=XYArea of triangleXYZ=1
2xysinZ=1
2( 15. 2 )( 18. 00 )sin 62◦= 120 .8cm^2(or area=1
2xzsinY=1
2( 15. 2 )( 17. 27 )sin67◦= 120 .8cm^2 )It is always worth checking with triangle problems that
the longest side is opposite the largest angle and vice-
versa. In this problem,Yis the largest angle andXZis
the longest of the three sides.Problem 2. Solve the triangleABCgiven
B= 78 ◦ 51 ′,AC= 22 .31mm andAB= 17 .92 mm.
Also find its areaTriangleABCis shown in Figure 23.3. Solving the
triangle means finding anglesAandCand sideBC.ABa Cb 5 22.31mmc^517.92mm
788519Figure 23.3Applying the sine rule,
22. 31
sin78◦ 51 ′=17. 92
sinCfrom whichsinC=17 .92sin78◦ 51 ′
22. 31= 0. 7881Hence, C=sin−^10. 7881 = 52 ◦ 0 ′or 128◦ 0 ′SinceB= 78 ◦ 51 ′,Ccannot be 128◦ 0 ′, since 128◦ 0 ′+
78 ◦ 51 ′is greater than 180◦. Thus, onlyC= 52 ◦ 0 ′is
valid.
AngleA= 180 ◦− 78 ◦ 51 ′− 52 ◦ 0 ′= 49 ◦ 9 ′.Applying the sine rule, a
sin49◦ 9 ′=22. 31
sin78◦ 51 ′from which a=^22 .31sin49◦ 9 ′
sin78◦ 51 ′= 17 .20mmHence,A= 49 ◦ 9 ′,C= 52 ◦ 0 ′andBC= 17 .20mm.Area of triangleABC=1
2acsinB=1
2( 17. 20 )( 17. 92 )sin78◦ 51 ′= 151 .2mm^2Problem 3. Solve the trianglePQRand find its
area given thatQR= 36 .5mm,PR= 29 .6mmand
∠Q= 36 ◦