208 Basic Engineering Mathematics
from which e=√
1082. 85
= 32 .91mm=DFApplying the sine rule,32. 91
sin64◦=25. 0
sinFfrom which sinF=25 .0sin64◦
32. 91= 0. 6828Thus, ∠F=sin−^10. 6828 = 43 ◦ 4 ′or 136◦ 56 ′F= 136 ◦ 56 ′is notpossible inthis case since 136◦ 56 ′+
64 ◦is greater than 180◦. Thus, onlyF= 43 ◦ 4 ′is valid.
Then∠D= 180 ◦− 64 ◦− 43 ◦ 4 ′= 72 ◦ 56 ′.Area of triangleDEF=1
2dfsinE=1
2( 35. 0 )( 25. 0 )sin 64◦= 393 .2mm^2Problem 5. A triangleABChas sides
a= 9 .0cm,b= 7 .5cmandc= 6 .5cm. Determine
its three angles and its areaTriangleABCis shown in Figure 23.7. It is usual first
to calculate the largest angle to determine whether the
triangle is acute or obtuse. In this case the largest angle
isA(i.e. opposite the longest side).AB a 5 9.0cm Cc 5 6.5cm b 5 7.5cmFigure 23.7Applying the cosine rule, a^2 =b^2 +c^2 − 2 bccosA
from which 2 bccosA=b^2 +c^2 −a^2and cosA=b^2 +c^2 −a^2
2 bc=7. 52 + 6. 52 − 9. 02
2 ( 7. 5 )( 6. 5 )
= 0. 1795Hence, A=cos−^10.^1795 =^79.^67 ◦
(or 280. 33 ◦, which is clearly impossible)The triangle is thus acute angled since cosAis positive.
(If cosAhad been negative, angleAwould be obtuse;
i.e., would lie between 90◦and 180◦.)Applying the sine rule,9. 0
sin79. 67 ◦=7. 5
sinBfrom which sinB=7 .5sin79. 67 ◦
9. 0= 0. 8198Hence, B=sin−^10. 8198 = 55. 07 ◦
and C= 180 ◦− 79. 67 ◦− 55. 07 ◦= 45. 26 ◦Area=√
[s(s−a)(s−b)(s−c)], wheres=a+b+c
2=9. 0 + 7. 5 + 6. 5
2= 11 .5cm
Hence,area=√
[11. 5 ( 11. 5 − 9. 0 )( 11. 5 − 7. 5 )( 11. 5 − 6. 5 )]=√
[11. 5 ( 2. 5 )( 4. 0 )( 5. 0 )]= 23 .98cm^2Alternatively,area=
1
2acsinB=1
2( 9. 0 )( 6. 5 )sin 55. 07 ◦= 23 .98cm^2Problem 6. Solve triangleXYZ,shownin
Figure 23.8, and find its area given that
Y= 128 ◦,XY= 7 .2cmandYZ= 4 .5cm1288
x 5 4.5cmz 5 7.2cmyXY ZFigure 23.8Applying the cosine rule,
y^2 =x^2 +z^2 − 2 xzcosY= 4. 52 + 7. 22 −[2( 4. 5 )( 7. 2 )cos 128◦]
= 20. 25 + 51. 84 −[− 39 .89]
= 20. 25 + 51. 84 + 39. 89 = 112. 0y=√
112. 0 = 10 .58cm=XZApplying the sine rule,
10. 58
sin128◦=7. 2
sinZfrom which sinZ=7 .2sin128◦
10. 58= 0. 5363Hence, Z=sin−^10. 5363 = 32. 43 ◦
(or 147. 57 ◦which is not possible)Thus,X= 180 ◦− 128 ◦− 32. 43 ◦= 19. 57 ◦Area ofXYZ=1
2xzsinY=1
2( 4. 5 )( 7. 2 )sin 128◦= 12 .77cm^2