208 Basic Engineering Mathematics
from which e=
√
1082. 85
= 32 .91mm=DF
Applying the sine rule,
32. 91
sin64◦
=
25. 0
sinF
from which sinF=
25 .0sin64◦
32. 91
= 0. 6828
Thus, ∠F=sin−^10. 6828 = 43 ◦ 4 ′or 136◦ 56 ′
F= 136 ◦ 56 ′is notpossible inthis case since 136◦ 56 ′+
64 ◦is greater than 180◦. Thus, onlyF= 43 ◦ 4 ′is valid.
Then∠D= 180 ◦− 64 ◦− 43 ◦ 4 ′= 72 ◦ 56 ′.
Area of triangleDEF=
1
2
dfsinE
=
1
2
( 35. 0 )( 25. 0 )sin 64◦= 393 .2mm^2
Problem 5. A triangleABChas sides
a= 9 .0cm,b= 7 .5cmandc= 6 .5cm. Determine
its three angles and its area
TriangleABCis shown in Figure 23.7. It is usual first
to calculate the largest angle to determine whether the
triangle is acute or obtuse. In this case the largest angle
isA(i.e. opposite the longest side).
A
B a 5 9.0cm C
c 5 6.5cm b 5 7.5cm
Figure 23.7
Applying the cosine rule, a^2 =b^2 +c^2 − 2 bccosA
from which 2 bccosA=b^2 +c^2 −a^2
and cosA=
b^2 +c^2 −a^2
2 bc
=
7. 52 + 6. 52 − 9. 02
2 ( 7. 5 )( 6. 5 )
= 0. 1795
Hence, A=cos−^10.^1795 =^79.^67 ◦
(or 280. 33 ◦, which is clearly impossible)
The triangle is thus acute angled since cosAis positive.
(If cosAhad been negative, angleAwould be obtuse;
i.e., would lie between 90◦and 180◦.)
Applying the sine rule,
9. 0
sin79. 67 ◦
=
7. 5
sinB
from which sinB=
7 .5sin79. 67 ◦
9. 0
= 0. 8198
Hence, B=sin−^10. 8198 = 55. 07 ◦
and C= 180 ◦− 79. 67 ◦− 55. 07 ◦= 45. 26 ◦
Area=
√
[s(s−a)(s−b)(s−c)], where
s=
a+b+c
2
=
9. 0 + 7. 5 + 6. 5
2
= 11 .5cm
Hence,
area=
√
[11. 5 ( 11. 5 − 9. 0 )( 11. 5 − 7. 5 )( 11. 5 − 6. 5 )]
=
√
[11. 5 ( 2. 5 )( 4. 0 )( 5. 0 )]= 23 .98cm^2
Alternatively,area=
1
2
acsinB
=
1
2
( 9. 0 )( 6. 5 )sin 55. 07 ◦= 23 .98cm^2
Problem 6. Solve triangleXYZ,shownin
Figure 23.8, and find its area given that
Y= 128 ◦,XY= 7 .2cmandYZ= 4 .5cm
1288
x 5 4.5cm
z 5 7.2cm
y
X
Y Z
Figure 23.8
Applying the cosine rule,
y^2 =x^2 +z^2 − 2 xzcosY
= 4. 52 + 7. 22 −[2( 4. 5 )( 7. 2 )cos 128◦]
= 20. 25 + 51. 84 −[− 39 .89]
= 20. 25 + 51. 84 + 39. 89 = 112. 0
y=
√
112. 0 = 10 .58cm=XZ
Applying the sine rule,
10. 58
sin128◦
=
7. 2
sinZ
from which sinZ=
7 .2sin128◦
10. 58
= 0. 5363
Hence, Z=sin−^10. 5363 = 32. 43 ◦
(or 147. 57 ◦which is not possible)
Thus,X= 180 ◦− 128 ◦− 32. 43 ◦= 19. 57 ◦
Area ofXYZ=
1
2
xzsinY=
1
2
( 4. 5 )( 7. 2 )sin 128◦
= 12 .77cm^2