The circle 233
- Convert to degrees:
(a)
7 π
6rad (b)4 π
9rad (c)7 π
12rad- Convert to degrees and minutes:
(a) 0.0125rad (b) 2.69rad
(c) 7.241rad
26.4 Arc length and area of circles and sectors
26.4.1 Arc length
From the definition of the radian in the previous section
and Figure 26.7,
arc length,s=rθ whereθis in radians26.4.2 Area of a circle
From Chapter 25, for any circle,area=π×(radius)^2
i.e. area=πr^2
Sincer=
d
2, area=πr^2 or
πd^2
426.4.3 Area of a sector
Area of a sector=θ
360(πr^2 )whenθis in degrees=
θ
2 π(
πr^2)=1
2
r^2 θ whenθis in radiansProblem 8. A hockey pitch has a semicircle of
radius 14.63m aroundeach goal net. Find the area
enclosed by the semicircle, correct to the nearest
square metreArea of a semicircle=
1
2πr^2Whenr= 14 .63m, area=
1
2π( 14. 63 )^2i.e. area of semicircle=336m^2Problem 9. Find the area of a circular metal plate
having a diameter of 35.0mm, correct to the nearest
square millimetreArea of a circle=πr^2 =πd^2
4Whend= 35 .0mm, area=π( 35. 0 )^2
4
i.e. area of circular plate=962mm^2Problem 10. Find the area of a circle having a
circumference of 60.0mmCircumference,c= 2 πrfrom which radius,r=c
2 π=60. 0
2 π=30. 0
π
Area of a circle=πr^2i.e. area=π(
30. 0
π) 2
= 286 .5mm^2Problem 11. Find the length of the arc of a circle
of radius 5.5cm when the angle subtended at the
centre is 1.20 radiansLength of arc,s=rθ,whereθis in radians.
Hence,arc length,s=( 5. 5 )( 1. 20 )= 6 .60cm.Problem 12. Determine the diameter and
circumference of a circle if an arc of length 4.75cm
subtends an angle of 0.91 radiansSince arc length,s=rθthen
radius,r=s
θ=4. 75
0. 91= 5 .22cm
Diameter= 2 ×radius= 2 × 5. 22 =10.44cm
Circumference,c=πd=π( 10. 44 )=32.80cmProblem 13. If an angle of 125◦is subtended by
an arc of a circle of radius 8.4cm, find the length of
(a) the minor arc and (b) the major arc, correct to
3 significant figuresSince 180◦=πrad then 1◦=( π180)
rad and125 ◦= 125(π
180)
rad(a) Length of minor arc,s=rθ=( 8. 4 )( 125 )( π
180)
=18.3cm,correct to 3 significant figures