Vectors 275
a 12 a 2
a 11 a 2
2.6m/s^2
1268
a 1
2 a 2
a 2
a 1
1.5m/s^2
1458
Figure 29.35
Vertical component ofa 1 +a 2 ,
V= 1 .5sin90◦+ 2 .6sin145◦= 2. 99
From Figure 29.36, the magnitude ofa 1 +a 2 ,
R=
√
(− 2. 13 )^2 + 2. 992 = 3 .67m/s^2
In Figure 29.36,α=tan−^1
(
2. 99
2. 13
)
= 54. 53 ◦and
θ= 180 ◦− 54. 53 ◦= 125. 47 ◦
Thus,a 1 +a 2 = 3 .67m/s^2 at 125. 47 ◦
R
2.13 0
2.99
Figure 29.36
Horizontal component ofa 1 −a 2
= 1 .5cos90◦− 2 .6cos145◦= 2. 13
Vertical component ofa 1 −a 2
= 1 .5sin90◦− 2 .6sin145◦= 0
Magnitude ofa 1 −a 2 =
√
2. 132 + 02
= 2 .13m/s^2
Direction ofa 1 −a 2 =tan−^1
(
0
2. 13
)
= 0 ◦
Thus,a 1 −a 2 = 2 .13m/s^2 at 0◦
Problem 12. Calculate the resultant of
(a)v 1 −v 2 +v 3 and (b)v 2 −v 1 −v 3 when
v 1 =22 units at 140◦,v 2 =40 units at 190◦and
v 3 =15 units at 290◦
(a) The vectors are shown in Figure 29.37.
15
40
22
1408
1908
2908
2 H 1 H
1 V
2 V
Figure 29.37
The horizontal component ofv 1 −v 2 +v 3
=(22cos140◦)−(40cos190◦)+(15cos290◦)
=(− 16. 85 )−(− 39. 39 )+( 5. 13 )=27.67 units
The vertical component ofv 1 −v 2 +v 3
=(22sin140◦)−(40sin190◦)+(15sin290◦)
=( 14. 14 )−(− 6. 95 )+(− 14. 10 )=6.99 units
The magnitude of the resultant,
R=
√
27. 672 + 6. 992 =28.54 units
The direction of the resultant
R=tan−^1
(
6. 99
27. 67
)
= 14. 18 ◦
Thus,v 1 −v 2 +v 3 = 28 .54 units at 14. 18 ◦
(b) The horizontal component ofv 2 −v 1 −v 3
=(40cos190◦)−(22cos140◦)−(15cos290◦)
=(− 39. 39 )−(− 16. 85 )−( 5. 13 )=−27.67 units
The vertical component ofv 2 −v 1 −v 3
=(40sin190◦)−(22sin140◦)−(15sin290◦)
=(− 6. 95 )−( 14. 14 )−(− 14. 10 )=−6.99 units
From Figure 29.38, the magnitude of the resul-
tant,R=
√
(− 27. 67 )^2 +(− 6. 99 )^2 =28.54 units
and α=tan−^1
(
6. 99
27. 67
)
= 14. 18 ◦, from which,
θ= 180 ◦+ 14. 18 ◦= 194. 18 ◦