282 Basic Engineering Mathematics
y 155
y (^25)
4
308
Figure 30.12
y 1 5
y (^2)
4
(^0)
yR
a
b
30
150
Figure 30.13
from which yR=
√
75. 641 = 8. 697
Using the sine rule,
8. 697
sin150◦
4
sinφ
from which sinφ=
4sin150◦
8. 697
= 0. 22996
and φ=sin−^10. 22996
= 13. 29 ◦or 0.232rad
Hence,yR=y 1 +y 2 =5sinωt+4sin(ωt−π/ 6 )
= 8 .697sin(ωt− 0. 232 )
Problem 7. Giveny 1 =2sinωtand
y 2 =3sin(ωt+π/ 4 ), obtain an expression, by
calculation, for the resultant,yR=y 1 +y 2
When timet=0, the position of phasorsy 1 andy 2 are
as shown in Figure 30.14(a). To obtain the resultant,y 1
is drawn horizontally, 2 units long, andy 2 is drawn 3
units long at an angle ofπ/4rad or 45◦and joined to
the end ofy 1 as shown in Figure 30.14(b).
From Figure 30.14(b), and using the cosine rule,
y^2 R= 22 + 32 −[2( 2 )( 3 )cos135◦]
= 4 + 9 −[− 8 .485]= 21. 485
Hence, yR=
√
21. 485 = 4. 6352
Using the sine rule
3
sinφ
- 6352
sin135◦
y 253
y 152
/4 or 45 8
(a)
y 152
y 253
1358
458
yR
(b)
Figure 30.14
from which sinφ=
3sin135◦
6352
= 0. 45765
Hence, φ=sin−^10. 45765
= 27. 24 ◦or 0.475rad
Thus, by calculation, yR=^4 .635sin(ωt+^0.^475 )
Problem 8. Determine
20sinωt+10sin
(
ωt+
π
3
)
using the cosine and sine rules
From the phasor diagram of Figure 30.15 and using the
cosine rule,
i^2 R= 202 + 102 −[2( 20 )( 10 )cos 120◦]= 700
i 25 10 A
i 15 20 A
iR
^1208608
Figure 30.15
Hence, iR=
√
700 = 26 .46A
Using the sine rule gives
10
sinφ
- 46
sin120◦