Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

282 Basic Engineering Mathematics


y 155

y (^25)
4
308
Figure 30.12
y 1  5
y (^2) 
4
(^0) 
yR
a
b
30 
150 
Figure 30.13
from which yR=

75. 641 = 8. 697
Using the sine rule,
8. 697
sin150◦


4
sinφ
from which sinφ=
4sin150◦
8. 697
= 0. 22996
and φ=sin−^10. 22996
= 13. 29 ◦or 0.232rad
Hence,yR=y 1 +y 2 =5sinωt+4sin(ωt−π/ 6 )
= 8 .697sin(ωt− 0. 232 )
Problem 7. Giveny 1 =2sinωtand
y 2 =3sin(ωt+π/ 4 ), obtain an expression, by
calculation, for the resultant,yR=y 1 +y 2
When timet=0, the position of phasorsy 1 andy 2 are
as shown in Figure 30.14(a). To obtain the resultant,y 1
is drawn horizontally, 2 units long, andy 2 is drawn 3
units long at an angle ofπ/4rad or 45◦and joined to
the end ofy 1 as shown in Figure 30.14(b).
From Figure 30.14(b), and using the cosine rule,
y^2 R= 22 + 32 −[2( 2 )( 3 )cos135◦]
= 4 + 9 −[− 8 .485]= 21. 485
Hence, yR=

21. 485 = 4. 6352
Using the sine rule
3
sinφ



  1. 6352
    sin135◦
    y 253
    y 152
    /4 or 45 8
    (a)
    y 152
    y 253
    1358
     458
    yR
    (b)
    Figure 30.14
    from which sinφ=
    3sin135◦


  2. 6352
    = 0. 45765
    Hence, φ=sin−^10. 45765
    = 27. 24 ◦or 0.475rad
    Thus, by calculation, yR=^4 .635sin(ωt+^0.^475 )
    Problem 8. Determine
    20sinωt+10sin
    (
    ωt+
    π
    3
    )
    using the cosine and sine rules
    From the phasor diagram of Figure 30.15 and using the
    cosine rule,
    i^2 R= 202 + 102 −[2( 20 )( 10 )cos 120◦]= 700
    i 25 10 A
    i 15 20 A
    iR
    ^1208608
    Figure 30.15
    Hence, iR=

    700 = 26 .46A
    Using the sine rule gives
    10
    sinφ



  3. 46
    sin120◦

Free download pdf