326 Basic Engineering Mathematics
(b) When a sum of several terms is integrated the
result is the sum of the integrals of the separate
terms. For example,
∫
( 3 x+ 2 x^2 − 5 )dx=∫
3 xdx+∫
2 x^2 dx−∫
5 dx=3 x^2
2+2 x^3
3− 5 x+c35.3 Standard integrals
From Chapter 34,
d
dx(sinax)=acosax. Since inte-
gration is the reverse process of differentiation, it
follows that
∫
acosax dx=sinax+cor∫
cosax dx=1
asinax+cBy similar reasoning
∫
sinax dx=−1
acosax+c
∫
eaxdx=1
aeax+cand∫
1
xdx=lnx+cFrom above,∫
axndx=axn+^1
n+ 1+cexcept when
n=− 1
Whenn=− 1 ,∫
x−^1 dx=∫ 1
xdx=lnx+c
A list of standard integrals is summarized in
Table 35.1.
Table 35.1Standard integrals
y∫
ydx1.∫
axnaxn+^1
n+ 1+c(except whenn=− 1 )2.∫
cosax dx1
asinax+c3.∫
sinax dx −1
acosax+c4.∫
eaxdx1
aeax+c5.∫ 1
xdx lnx+cProblem 1. Determine∫
7 x^2 dxThe standard integral,∫
axndx=axn+^1
n+ 1+cWhena=7andn= 2 ,
∫
7 x^2 dx=7 x^2 +^1
2 + 1+c=7 x^3
3+c or7
3x^3 +cProblem 2. Determine∫
2 t^3 dtWhena=2andn= 3 ,
∫
2 t^3 dt=2 t^3 +^1
3 + 1+c=2 t^4
4+c=1
2t^4 +cNote that each of the results in worked examples 1 and
2 may be checked by differentiating them.Problem 3. Determine∫
8 dx∫
8 dxis the same as∫
8 x^0 dxand, using the general
rule whena=8andn=0, gives
∫
8 x^0 dx=8 x^0 +^1
0 + 1+c= 8 x+cIn general, ifkis a constant then∫
kdx=kx+c.Problem 4. Determine∫
2 xdxWhena=2andn= 1 ,
∫
2 xdx=∫
2 x^1 dx=
2 x^1 +^1
1 + 1+c=
2 x^2
2+c=x^2 +cProblem 5. Determine∫ (
3 +2
5x− 6 x^2)
dx∫
(
3 +2
5x− 6 x^2)
dxmay be written as
∫
3 dx+∫ 2
5xdx−∫
6 x^2 dx
i.e., each term is integrated separately. (This splitting
up of terms only applies, however, for addition and