326 Basic Engineering Mathematics
(b) When a sum of several terms is integrated the
result is the sum of the integrals of the separate
terms. For example,
∫
( 3 x+ 2 x^2 − 5 )dx
=
∫
3 xdx+
∫
2 x^2 dx−
∫
5 dx
=
3 x^2
2
+
2 x^3
3
− 5 x+c
35.3 Standard integrals
From Chapter 34,
d
dx
(sinax)=acosax. Since inte-
gration is the reverse process of differentiation, it
follows that
∫
acosax dx=sinax+c
or
∫
cosax dx=
1
a
sinax+c
By similar reasoning
∫
sinax dx=−
1
a
cosax+c
∫
eaxdx=
1
a
eax+c
and
∫
1
x
dx=lnx+c
From above,
∫
axndx=
axn+^1
n+ 1
+cexcept when
n=− 1
Whenn=− 1 ,
∫
x−^1 dx=
∫ 1
x
dx=lnx+c
A list of standard integrals is summarized in
Table 35.1.
Table 35.1Standard integrals
y
∫
ydx
1.
∫
axn
axn+^1
n+ 1
+c(except whenn=− 1 )
2.
∫
cosax dx
1
a
sinax+c
3.
∫
sinax dx −
1
a
cosax+c
4.
∫
eaxdx
1
a
eax+c
5.
∫ 1
x
dx lnx+c
Problem 1. Determine
∫
7 x^2 dx
The standard integral,
∫
axndx=
axn+^1
n+ 1
+c
Whena=7andn= 2 ,
∫
7 x^2 dx=
7 x^2 +^1
2 + 1
+c=
7 x^3
3
+c or
7
3
x^3 +c
Problem 2. Determine
∫
2 t^3 dt
Whena=2andn= 3 ,
∫
2 t^3 dt=
2 t^3 +^1
3 + 1
+c=
2 t^4
4
+c=
1
2
t^4 +c
Note that each of the results in worked examples 1 and
2 may be checked by differentiating them.
Problem 3. Determine
∫
8 dx
∫
8 dxis the same as
∫
8 x^0 dxand, using the general
rule whena=8andn=0, gives
∫
8 x^0 dx=
8 x^0 +^1
0 + 1
+c= 8 x+c
In general, ifkis a constant then
∫
kdx=kx+c.
Problem 4. Determine
∫
2 xdx
Whena=2andn= 1 ,
∫
2 xdx=
∫
2 x^1 dx=
2 x^1 +^1
1 + 1
+c=
2 x^2
2
+c
=x^2 +c
Problem 5. Determine
∫ (
3 +
2
5
x− 6 x^2
)
dx
∫
(
3 +
2
5
x− 6 x^2
)
dxmay be written as
∫
3 dx+
∫ 2
5
xdx−
∫
6 x^2 dx
i.e., each term is integrated separately. (This splitting
up of terms only applies, however, for addition and