Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

328 Basic Engineering Mathematics


From 3 of Table 35.1,

5sin2θdθ=( 5 )

(

1
2

)
cos2θ+c

=−

5
2

cos 2θ+c

Problem 13. Determine


5 e^3 xdx

From 4 of Table 35.1,

5 e^3 xdx=( 5 )

(
1
3

)
e^3 x+c

=

5
3

e^3 x+c

Problem 14. Determine


2
3 e^4 t

dt


2
3 e^4 t

dt=


2
3

e−^4 tdt

=

(
2
3

)(

1
4

)
e−^4 t+c

=−

1
6

e−^4 t+c=−

1
6 e^4 t

+c

Problem 15. Determine


3
5 x

dx

From 5 of Table 35.1,

3
5 x

dx=

∫ (
3
5

)(
1
x

)
dx

=

3
5

lnx+c

Problem 16. Determine

∫ (
2 x^2 + 1
x

)
dx

∫ (
2 x^2 + 1
x

)
dx=

∫ (
2 x^2
x

+

1
x

)
dx

=

∫ (
2 x+

1
x

)
dx=

2 x^2
2

+lnx+c

=x^2 +lnx+c

Now try the following Practice Exercise

PracticeExercise 139 Standard integrals
(answers on page 355)

Determine the following integrals.


  1. (a)



4 dx (b)


7 xdx


  1. (a)



5 x^3 dx (b)


3 t^7 dt


  1. (a)


∫ 2
5

x^2 dx (b)

∫ 5
6

x^3 dx


  1. (a)



( 2 x^4 − 3 x)dx (b)


( 2 − 3 t^3 )dt


  1. (a)



(
3 x^2 − 5 x
x

)
dx (b)


( 2 +θ)^2 dθ]


  1. (a)



( 2 +θ)( 3 θ− 1 )dθ
(b)


( 3 x− 2 )(x^2 + 1 )dx


  1. (a)


∫ 4
3 x^2

dx (b)

∫ 3
4 x^4

dx


  1. (a) 2


∫√
x^3 dx (b)

∫ 1
4

√ 4
x^5 dx


  1. (a)


∫ − 5

t^3

dt (b)

∫ 3
7

√ 5
x^4

dx


  1. (a)



3cos2xdx (b)


7sin3θdθ


  1. (a)



3sin

1
2

xdx (b)


6cos

1
3

xdx


  1. (a)


∫ 3
4

e^2 xdx (b)

2
3

∫ dx
e^5 x


  1. (a)


∫ 2
3 x

dx (b)


(
u^2 − 1
u

)
du


  1. (a)


∫ ( 2 + 3 x)^2

x

dx (b)


(
1
t

+ 2 t

) 2
dt

35.4 Definite integrals

Integrals containing an arbitrary constant cin their
results are calledindefinite integralssince theirprecise
value cannot be determined without furtherinformation.
Definite integralsare those in which limits are applied.
Ifanexpressioniswrittenas[x]ba, biscalledtheupper
limitandathelower limit. The operation of applying
the limits is defined as [x]ba=(b)−(a).
Free download pdf