328 Basic Engineering Mathematics
From 3 of Table 35.1,
∫
5sin2θdθ=( 5 )
(
−
1
2
)
cos2θ+c
=−
5
2
cos 2θ+c
Problem 13. Determine
∫
5 e^3 xdx
From 4 of Table 35.1,
∫
5 e^3 xdx=( 5 )
(
1
3
)
e^3 x+c
=
5
3
e^3 x+c
Problem 14. Determine
∫
2
3 e^4 t
dt
∫
2
3 e^4 t
dt=
∫
2
3
e−^4 tdt
=
(
2
3
)(
−
1
4
)
e−^4 t+c
=−
1
6
e−^4 t+c=−
1
6 e^4 t
+c
Problem 15. Determine
∫
3
5 x
dx
From 5 of Table 35.1,
∫
3
5 x
dx=
∫ (
3
5
)(
1
x
)
dx
=
3
5
lnx+c
Problem 16. Determine
∫ (
2 x^2 + 1
x
)
dx
∫ (
2 x^2 + 1
x
)
dx=
∫ (
2 x^2
x
+
1
x
)
dx
=
∫ (
2 x+
1
x
)
dx=
2 x^2
2
+lnx+c
=x^2 +lnx+c
Now try the following Practice Exercise
PracticeExercise 139 Standard integrals
(answers on page 355)
Determine the following integrals.
- (a)
∫
4 dx (b)
∫
7 xdx
- (a)
∫
5 x^3 dx (b)
∫
3 t^7 dt
- (a)
∫ 2
5
x^2 dx (b)
∫ 5
6
x^3 dx
- (a)
∫
( 2 x^4 − 3 x)dx (b)
∫
( 2 − 3 t^3 )dt
- (a)
∫
(
3 x^2 − 5 x
x
)
dx (b)
∫
( 2 +θ)^2 dθ]
- (a)
∫
( 2 +θ)( 3 θ− 1 )dθ
(b)
∫
( 3 x− 2 )(x^2 + 1 )dx
- (a)
∫ 4
3 x^2
dx (b)
∫ 3
4 x^4
dx
- (a) 2
∫√
x^3 dx (b)
∫ 1
4
√ 4
x^5 dx
- (a)
∫ − 5
√
t^3
dt (b)
∫ 3
7
√ 5
x^4
dx
- (a)
∫
3cos2xdx (b)
∫
7sin3θdθ
- (a)
∫
3sin
1
2
xdx (b)
∫
6cos
1
3
xdx
- (a)
∫ 3
4
e^2 xdx (b)
2
3
∫ dx
e^5 x
- (a)
∫ 2
3 x
dx (b)
∫
(
u^2 − 1
u
)
du
- (a)
∫ ( 2 + 3 x)^2
√
x
dx (b)
∫
(
1
t
+ 2 t
) 2
dt
35.4 Definite integrals
Integrals containing an arbitrary constant cin their
results are calledindefinite integralssince theirprecise
value cannot be determined without furtherinformation.
Definite integralsare those in which limits are applied.
Ifanexpressioniswrittenas[x]ba, biscalledtheupper
limitandathelower limit. The operation of applying
the limits is defined as [x]ba=(b)−(a).