328 Basic Engineering Mathematics
From 3 of Table 35.1,
∫
5sin2θdθ=( 5 )(
−1
2)
cos2θ+c=−5
2cos 2θ+cProblem 13. Determine∫
5 e^3 xdxFrom 4 of Table 35.1,
∫
5 e^3 xdx=( 5 )(
1
3)
e^3 x+c=5
3e^3 x+cProblem 14. Determine∫
2
3 e^4 tdt∫
2
3 e^4 tdt=∫
2
3e−^4 tdt=(
2
3)(
−1
4)
e−^4 t+c=−1
6e−^4 t+c=−1
6 e^4 t+cProblem 15. Determine∫
3
5 xdxFrom 5 of Table 35.1,
∫
3
5 xdx=∫ (
3
5)(
1
x)
dx=3
5lnx+cProblem 16. Determine∫ (
2 x^2 + 1
x)
dx∫ (
2 x^2 + 1
x)
dx=∫ (
2 x^2
x+1
x)
dx=∫ (
2 x+1
x)
dx=2 x^2
2+lnx+c=x^2 +lnx+cNow try the following Practice ExercisePracticeExercise 139 Standard integrals
(answers on page 355)Determine the following integrals.- (a)
∫
4 dx (b)∫
7 xdx- (a)
∫
5 x^3 dx (b)∫
3 t^7 dt- (a)
∫ 2
5x^2 dx (b)∫ 5
6x^3 dx- (a)
∫
( 2 x^4 − 3 x)dx (b)∫
( 2 − 3 t^3 )dt- (a)
∫
(
3 x^2 − 5 x
x)
dx (b)∫
( 2 +θ)^2 dθ]- (a)
∫
( 2 +θ)( 3 θ− 1 )dθ
(b)∫
( 3 x− 2 )(x^2 + 1 )dx- (a)
∫ 4
3 x^2dx (b)∫ 3
4 x^4dx- (a) 2
∫√
x^3 dx (b)∫ 1
4√ 4
x^5 dx- (a)
∫ − 5
√
t^3dt (b)∫ 3
7√ 5
x^4dx- (a)
∫
3cos2xdx (b)∫
7sin3θdθ- (a)
∫
3sin1
2xdx (b)∫
6cos1
3xdx- (a)
∫ 3
4e^2 xdx (b)2
3∫ dx
e^5 x- (a)
∫ 2
3 xdx (b)∫
(
u^2 − 1
u)
du- (a)
∫ ( 2 + 3 x)^2
√
xdx (b)∫
(
1
t+ 2 t) 2
dt35.4 Definite integrals
Integrals containing an arbitrary constant cin their
results are calledindefinite integralssince theirprecise
value cannot be determined without furtherinformation.
Definite integralsare those in which limits are applied.
Ifanexpressioniswrittenas[x]ba, biscalledtheupper
limitandathelower limit. The operation of applying
the limits is defined as [x]ba=(b)−(a).