330 Basic Engineering Mathematics
={
−3
2(− 1 )}
−{
−3
2( 1 )}=3
2+3
2= 3Problem 23. Evaluate∫ 214cos3tdt∫ 214cos3tdt=[
( 4 )(
1
3)
sin3t] 21=[
4
3sin3t] 21={
4
3sin6}
−{
4
3sin3}Note that limits of trigonometric functions are always
expressed inradians– thus, for example, sin 6 means
the sine of 6 radians=− 0. 279415 ...Hence,
∫ 214cos3tdt={
4
3(− 0. 279415 ...)}
−{
4
3( 0. 141120 ...)}=(− 0. 37255 )−( 0. 18816 )
=−0.5607Problem 24. Evaluate∫ 214 e2xdxcorrect to
4 significant figures∫ 214 e^2 xdx=[
4
2e^2 x] 21= 2[
e^2 x] 2
1=2[e^4 −e^2 ]=2[54. 5982 − 7 .3891]
=94.42Problem 25. Evaluate∫ 413
4 uducorrect to 4
significant figures
∫ 413
4 udu=[
3
4lnu] 41=3
4[ln4−ln 1]=3
4[1. 3863 −0]= 1. 040Now try the following Practice ExercisePracticeExercise 140 Definite integrals
(answers on page 355)
In problems 1 to 10, evaluate the definite integrals
(where necessary, correct to 4 significant figures).- (a)
∫ 21xdx (b)∫ 21(x− 1 )dx- (a)
∫ 415 x^2 dx (b)∫ 1− 1−3
4t^2 dt- (a)
∫ 2− 1( 3 −x^2 )dx (b)∫ 31(x^2 − 4 x+ 3 )dx- (a)
∫ 21(x^3 − 3 x)dx (b)∫ 21(x^2 − 3 x+ 3 )dx- (a)
∫ 402√
xdx (b)∫ 321
x^2dx- (a)
∫π03
2cosθdθ (b)∫π/ 204cosθdθ- (a)
∫π/ 3π/ 62sin2θdθ (b)∫ 203sintdt- (a)
∫ 105cos3xdx(b)∫π/ 2π/ 4(3sin2x−2cos3x)dx- (a)
∫ 103 e^3 tdt (b)∫ 2− 12
3 e^2 xdx- (a)
∫ 322
3 xdx (b)∫ 312 x^2 + 1
xdx35.5 The area under a curve
The area shown shaded in Figure 35.1 may be deter-
mined using approximate methods such as the trape-
zoidal rule, the mid-ordinate rule or Simpson’s rule (see
Chapter 28) or, more precisely, by using integration.0 x 5 ax 5 by 5 f(x)yxFigure 35.1