330 Basic Engineering Mathematics
=
{
−
3
2
(− 1 )
}
−
{
−
3
2
( 1 )
}
=
3
2
+
3
2
= 3
Problem 23. Evaluate
∫ 2
1
4cos3tdt
∫ 2
1
4cos3tdt=
[
( 4 )
(
1
3
)
sin3t
] 2
1
=
[
4
3
sin3t
] 2
1
=
{
4
3
sin6
}
−
{
4
3
sin3
}
Note that limits of trigonometric functions are always
expressed inradians– thus, for example, sin 6 means
the sine of 6 radians=− 0. 279415 ...Hence,
∫ 2
1
4cos3tdt=
{
4
3
(− 0. 279415 ...)
}
−
{
4
3
( 0. 141120 ...)
}
=(− 0. 37255 )−( 0. 18816 )
=−0.5607
Problem 24. Evaluate
∫ 2
1
4 e2xdxcorrect to
4 significant figures
∫ 2
1
4 e^2 xdx=
[
4
2
e^2 x
] 2
1
= 2
[
e^2 x
] 2
1
=2[e^4 −e^2 ]
=2[54. 5982 − 7 .3891]
=94.42
Problem 25. Evaluate
∫ 4
1
3
4 u
ducorrect to 4
significant figures
∫ 4
1
3
4 u
du=
[
3
4
lnu
] 4
1
=
3
4
[ln4−ln 1]
=
3
4
[1. 3863 −0]= 1. 040
Now try the following Practice Exercise
PracticeExercise 140 Definite integrals
(answers on page 355)
In problems 1 to 10, evaluate the definite integrals
(where necessary, correct to 4 significant figures).
- (a)
∫ 2
1
xdx (b)
∫ 2
1
(x− 1 )dx
- (a)
∫ 4
1
5 x^2 dx (b)
∫ 1
− 1
−
3
4
t^2 dt
- (a)
∫ 2
− 1
( 3 −x^2 )dx (b)
∫ 3
1
(x^2 − 4 x+ 3 )dx
- (a)
∫ 2
1
(x^3 − 3 x)dx (b)
∫ 2
1
(x^2 − 3 x+ 3 )dx
- (a)
∫ 4
0
2
√
xdx (b)
∫ 3
2
1
x^2
dx
- (a)
∫π
0
3
2
cosθdθ (b)
∫π/ 2
0
4cosθdθ
- (a)
∫π/ 3
π/ 6
2sin2θdθ (b)
∫ 2
0
3sintdt
- (a)
∫ 1
0
5cos3xdx
(b)
∫π/ 2
π/ 4
(3sin2x−2cos3x)dx
- (a)
∫ 1
0
3 e^3 tdt (b)
∫ 2
− 1
2
3 e^2 x
dx
- (a)
∫ 3
2
2
3 x
dx (b)
∫ 3
1
2 x^2 + 1
x
dx
35.5 The area under a curve
The area shown shaded in Figure 35.1 may be deter-
mined using approximate methods such as the trape-
zoidal rule, the mid-ordinate rule or Simpson’s rule (see
Chapter 28) or, more precisely, by using integration.
0 x 5 ax 5 b
y 5 f(x)
y
x
Figure 35.1