Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

330 Basic Engineering Mathematics


=

{

3
2

(− 1 )

}

{

3
2

( 1 )

}

=

3
2

+

3
2

= 3

Problem 23. Evaluate

∫ 2

1

4cos3tdt

∫ 2

1

4cos3tdt=

[
( 4 )

(
1
3

)
sin3t

] 2

1

=

[
4
3

sin3t

] 2

1

=

{
4
3

sin6

}

{
4
3

sin3

}

Note that limits of trigonometric functions are always
expressed inradians– thus, for example, sin 6 means
the sine of 6 radians=− 0. 279415 ...Hence,
∫ 2

1

4cos3tdt=

{
4
3

(− 0. 279415 ...)

}

{
4
3

( 0. 141120 ...)

}

=(− 0. 37255 )−( 0. 18816 )
=−0.5607

Problem 24. Evaluate

∫ 2

1

4 e2xdxcorrect to
4 significant figures

∫ 2

1

4 e^2 xdx=

[
4
2

e^2 x

] 2

1

= 2

[
e^2 x

] 2
1

=2[e^4 −e^2 ]

=2[54. 5982 − 7 .3891]
=94.42

Problem 25. Evaluate

∫ 4

1

3
4 u

ducorrect to 4
significant figures
∫ 4

1

3
4 u

du=

[
3
4

lnu

] 4

1

=

3
4

[ln4−ln 1]

=

3
4

[1. 3863 −0]= 1. 040

Now try the following Practice Exercise

PracticeExercise 140 Definite integrals
(answers on page 355)
In problems 1 to 10, evaluate the definite integrals
(where necessary, correct to 4 significant figures).


  1. (a)


∫ 2

1

xdx (b)

∫ 2

1

(x− 1 )dx


  1. (a)


∫ 4

1

5 x^2 dx (b)

∫ 1

− 1


3
4

t^2 dt


  1. (a)


∫ 2

− 1

( 3 −x^2 )dx (b)

∫ 3

1

(x^2 − 4 x+ 3 )dx


  1. (a)


∫ 2

1

(x^3 − 3 x)dx (b)

∫ 2

1

(x^2 − 3 x+ 3 )dx


  1. (a)


∫ 4

0

2


xdx (b)

∫ 3

2

1
x^2

dx


  1. (a)


∫π

0

3
2

cosθdθ (b)

∫π/ 2

0

4cosθdθ


  1. (a)


∫π/ 3

π/ 6

2sin2θdθ (b)

∫ 2

0

3sintdt


  1. (a)


∫ 1

0

5cos3xdx

(b)

∫π/ 2

π/ 4

(3sin2x−2cos3x)dx


  1. (a)


∫ 1

0

3 e^3 tdt (b)

∫ 2

− 1

2
3 e^2 x

dx


  1. (a)


∫ 3

2

2
3 x

dx (b)

∫ 3

1

2 x^2 + 1
x

dx

35.5 The area under a curve

The area shown shaded in Figure 35.1 may be deter-
mined using approximate methods such as the trape-
zoidal rule, the mid-ordinate rule or Simpson’s rule (see
Chapter 28) or, more precisely, by using integration.

0 x 5 ax 5 b

y 5 f(x)

y

x

Figure 35.1
Free download pdf