332 Basic Engineering Mathematics
4030201050 1234v (m/s)t(s)v 2 t^2 5Figure 35.4Problem 28. Sketch the graph
y=x^3 + 2 x^2 − 5 x−6 betweenx=−3and
x=2 and determine the area enclosed by
the curve and thex-axisA table of values is produced and the graph sketched as
shown in Figure 35.5, in which the area enclosed by the
curve and thex-axisisshownshaded.x − 3 − 2 − 1 0 1 2y 0 4 0 − 6 − 8 0yx623 22 21 01y 5 x^3 1 2 x^2 2 5 x 2 62Figure 35.5Shaded area=∫− 1− 3ydx−∫ 2− 1ydx, the minus sign
before the second integral being necessary since the
enclosed area is below thex-axis. Hence,shaded area=∫− 1− 3(x^3 + 2 x^2 − 5 x− 6 )dx−∫ 2− 1(x^3 + 2 x^2 − 5 x− 6 )dx=[
x^4
4+
2 x^3
3−
5 x^2
2− 6 x]− 1− 3−[
x^4
4+2 x^3
3−5 x^2
2− 6 x] 2− 1=[{
1
4−
2
3−
5
2+ 6}
−{
81
4− 18 −
45
2+ 18}]−[{
4 +16
3− 10 − 12}
−{
1
4−2
3−5
2+ 6}]=[{
31
12}
−{
− 21
4}]
−[{
− 122
3}
−{
31
12}]=[
51
3]
−[
− 153
4]= 211
12or 21.08 square unitsProblem 29. Determine the area enclosed by the
curvey= 3 x^2 +4, thex-axis and ordinatesx= 1
andx=4 by (a) the trapezoidal rule, (b) the
mid-ordinate rule, (c) Simpson’s rule and
(d) integration.The curvey= 3 x^2 +4 is shown plotted in Figure 35.6.
The trapezoidal rule, the mid-ordinate rule and Simp-
son’s rule are discussed in Chapter 28, page 257.
(a) By the trapezoidal rulearea=(
width of
interval)[
1
2(
first+last
ordinate)+sum of
remaining
ordinates]