332 Basic Engineering Mathematics
40
30
20
10
5
0 1234
v (m/s)
t(s)
v 2 t^2 5
Figure 35.4
Problem 28. Sketch the graph
y=x^3 + 2 x^2 − 5 x−6 betweenx=−3and
x=2 and determine the area enclosed by
the curve and thex-axis
A table of values is produced and the graph sketched as
shown in Figure 35.5, in which the area enclosed by the
curve and thex-axisisshownshaded.
x − 3 − 2 − 1 0 1 2
y 0 4 0 − 6 − 8 0
y
x
6
23 22 21 01
y 5 x^3 1 2 x^2 2 5 x 2 6
2
Figure 35.5
Shaded area=
∫− 1
− 3
ydx−
∫ 2
− 1
ydx, the minus sign
before the second integral being necessary since the
enclosed area is below thex-axis. Hence,
shaded area=
∫− 1
− 3
(x^3 + 2 x^2 − 5 x− 6 )dx
−
∫ 2
− 1
(x^3 + 2 x^2 − 5 x− 6 )dx
=
[
x^4
4
+
2 x^3
3
−
5 x^2
2
− 6 x
]− 1
− 3
−
[
x^4
4
+
2 x^3
3
−
5 x^2
2
− 6 x
] 2
− 1
=
[{
1
4
−
2
3
−
5
2
+ 6
}
−
{
81
4
− 18 −
45
2
+ 18
}]
−
[{
4 +
16
3
− 10 − 12
}
−
{
1
4
−
2
3
−
5
2
+ 6
}]
=
[{
3
1
12
}
−
{
− 2
1
4
}]
−
[{
− 12
2
3
}
−
{
3
1
12
}]
=
[
5
1
3
]
−
[
− 15
3
4
]
= 21
1
12
or 21.08 square units
Problem 29. Determine the area enclosed by the
curvey= 3 x^2 +4, thex-axis and ordinatesx= 1
andx=4 by (a) the trapezoidal rule, (b) the
mid-ordinate rule, (c) Simpson’s rule and
(d) integration.
The curvey= 3 x^2 +4 is shown plotted in Figure 35.6.
The trapezoidal rule, the mid-ordinate rule and Simp-
son’s rule are discussed in Chapter 28, page 257.
(a) By the trapezoidal rule
area=
(
width of
interval
)[
1
2
(
first+last
ordinate
)
+
sum of
remaining
ordinates
]