Revision Test 14 : Differentiation and integration
This assignment covers the material contained in Chapters 34 and 35.The marks available are shown in brackets at
the end of each question.
- Differentiate the following functions with respect
tox.
(a)y= 5 x^2 − 4 x+9(b)y=x^4 − 3 x^2 − 2
(4) - Giveny= 2 (x− 1 )^2 ,find
dy
dx
(3)
- Ify=
3
x
determine
dy
dx
(2)
- Givenf(t)=
√
t^5 ,findf′(t).(2)
- Determine the derivative of y= 5 − 3 x+
4
x^2
(3)
- Calculate the gradient of the curvey=3cos
x
3
at
x=
π
4
, correct to 3 decimal places. (4)
- Find the gradient of the curve
f(x)= 7 x^2 − 4 x+2 at the point (1, 5) (3) - Ify=5sin3x−2cos4xfind
dy
dx
(2)
- Determine the value of the differential coefficient
ofy=5ln2x−
3
e^2 x
whenx= 0 .8, correct to 3
significant figures. (4)
- If y= 5 x^4 − 3 x^3 + 2 x^2 − 6 x+5, find (a)
dy
dx
(b)
d^2 y
dx^2
(4)
- Newton’s law of cooling is given byθ=θ 0 e−kt,
where the excess of temperature at zero time is
θ 0 ◦C and at timetseconds isθ◦C. Determine
the rate of change of temperature after 40s, cor-
rect to 3 decimal places, given thatθ 0 = 16 ◦Cand
k=− 0. 01 (4)
In problems 12 to 15, determine the indefinite integrals.
- (a)
∫
(x^2 + 4 )dx (b)
∫
1
x^3
dx (4)
- (a)
∫ (
2
√
x
+ 3
√
x
)
dx (b)
∫
3
√
t^5 dt (4)
- (a)
∫
2
√ 3
x^2
dx (b)
∫ (
e^0.^5 x+
1
3 x
− 2
)
dx
(6)
- (a)
∫
( 2 +θ)^2 dθ
(b)
∫ (
cos
1
2
x+
3
x
−e^2 x
)
dx (6)
Evaluate the integrals in problems 16 to 19, each, where
necessary, correct to 4 significant figures.
- (a)
∫ 3
1
(t^2 − 2 t)dt (b)
∫ 2
− 1
(
2 x^3 − 3 x^2 + 2
)
dx
(6)
- (a)
∫π/ 3
0
3sin2tdt (b)
∫ 3 π/ 4
π/ 4
cos
1
3
xdx (7)
- (a)
∫ 2
1
(
2
x^2
+
1
x
+
3
4
)
dx
(b)
∫ 2
1
(
3
x
−
1
x^3
)
dx (8)
- (a)
∫ 1
0
(√
x+ 2 ex
)
dx (b)
∫ 2
1
(
r^3 −
1
r
)
dr
( 6 )
In Problems 20 to 22, findthe area bounded bythe curve,
thex-axis and the given ordinates. Assume answers are
in square units.Give answers correct to 2 decimal places
where necessary.
- y=x^2 ; x= 0 ,x=2(3)
- y= 3 x−x^2 ; x= 0 ,x=3(3)
- y=(x− 2 )^2 ; x= 1 ,x=2(4)
- Find the area enclosed between the curve
y=
√
x+
1
√
x
, the horizontal axis and the ordi-
natesx=1andx=4. Give the answer correct to
2 decimal places. (5)
- The forceFnewtons acting on a body at a dis-
tancex metres from a fixed point is given by
F= 2 x+ 3 x^2. If work done=
∫x 2
x 1
Fdx, deter-
mine the work done when the body moves
from the position whenx=1m to that when
x=4m. (3)