Basic Engineering Mathematics, Fifth Edition

(Amelia) #1

64 Basic Engineering Mathematics


(i) (iv) (vii)
x^2 −xy+y^2
x+y

)
x^3 + 0 + 0 +y^3
x^3 +x^2 y

−x^2 y +y^3
−x^2 y−xy^2

xy^2 +y^3

xy^2 +y^3

(i) xintox^3 goesx^2 .Putx^2 abovex^3.
(ii) x^2 (x+y)=x^3 +x^2 y
(iii) Subtract.
(iv) x into−x^2 ygoes−xy.Put−xyabove the
dividend.
(v) −xy(x+y)=−x^2 y−xy^2
(vi) Subtract.
(vii) xintoxy^2 goesy^2 .Puty^2 above the dividend.
(viii) y^2 (x+y)=xy^2 +y^3
(ix) Subtract.

Thus,

x^3 +y^3
x+y

=x^2 −xy+y^2.

Thezerosshowninthedividendarenotnormallyshown,
but are included to clarify the subtraction process and
to keep similar terms in their respective columns.

Problem 16. Divide 4a^3 − 6 a^2 b+ 5 b^3 by 2a−b

2 a^2 − 2 ab−b^2
2 a−b

)
4 a^3 − 6 a^2 b + 5 b^3
4 a^3 − 2 a^2 b
− 4 a^2 b + 5 b^3

− 4 a^2 b+ 2 ab^2
− 2 ab^2 + 5 b^3

− 2 ab^2 + b^3
4 b^3

Thus,

4 a^3 − 6 a^2 b+ 5 b^3
2 a−b

= 2 a^2 − 2 ab−b^2 , remain-
der 4b^3.

Alternatively, the answer may be expressed as

4 a^3 − 6 a^2 b+ 5 b^3
2 a−b

= 2 a^2 − 2 ab−b^2 +

4 b^3
2 a−b

Now try the following Practice Exercise

PracticeExercise 36 Basic operations in
algebra (answers on page 343)


  1. Simplifypq×pq^2 r.

  2. Simplify− 4 a×− 2 a.

  3. Simplify 3×− 2 q×−q.

  4. Evaluate 3pq− 5 qr−pqr when p= 3 ,
    q=−2andr=4.

  5. Determine the value of 3x^2 yz^3 , given that
    x= 2 ,y= 1


1
2

andz=

2
3


  1. Ifx=5andy=6, evaluate


23 (x−y)
y+xy+ 2 x


  1. Ifa= 4 ,b= 3 ,c=5andd=6, evaluate
    3 a+ 2 b
    3 c− 2 d

  2. Simplify 2x÷ 14 xy.

  3. Simplify


25 x^2 yz^3
5 xyz


  1. Multiply 3a−bbya+b.

  2. Multiply 2a− 5 b+cby 3a+b.

  3. Simplify 3a÷ 9 ab.

  4. Simplify 4a^2 b÷ 2 a.

  5. Divide 6x^2 yby 2xy.

  6. Divide 2x^2 +xy−y^2 byx+y.

  7. Divide 3p^2 −pq− 2 q^2 byp−q.

  8. Simplify(a+b)^2 +(a−b)^2.


9.3 Laws of indices

The laws of indices with numbers were covered in
Chapter 7; the laws of indices in algebraic terms are
as follows:
(1) am×an=am+n
For example,a^3 ×a^4 =a^3 +^4 =a^7
Free download pdf