64 Basic Engineering Mathematics
(i) (iv) (vii)
x^2 −xy+y^2
x+y
)
x^3 + 0 + 0 +y^3
x^3 +x^2 y
−x^2 y +y^3
−x^2 y−xy^2
xy^2 +y^3
xy^2 +y^3
(i) xintox^3 goesx^2 .Putx^2 abovex^3.
(ii) x^2 (x+y)=x^3 +x^2 y
(iii) Subtract.
(iv) x into−x^2 ygoes−xy.Put−xyabove the
dividend.
(v) −xy(x+y)=−x^2 y−xy^2
(vi) Subtract.
(vii) xintoxy^2 goesy^2 .Puty^2 above the dividend.
(viii) y^2 (x+y)=xy^2 +y^3
(ix) Subtract.
Thus,
x^3 +y^3
x+y
=x^2 −xy+y^2.
Thezerosshowninthedividendarenotnormallyshown,
but are included to clarify the subtraction process and
to keep similar terms in their respective columns.
Problem 16. Divide 4a^3 − 6 a^2 b+ 5 b^3 by 2a−b
2 a^2 − 2 ab−b^2
2 a−b
)
4 a^3 − 6 a^2 b + 5 b^3
4 a^3 − 2 a^2 b
− 4 a^2 b + 5 b^3
− 4 a^2 b+ 2 ab^2
− 2 ab^2 + 5 b^3
− 2 ab^2 + b^3
4 b^3
Thus,
4 a^3 − 6 a^2 b+ 5 b^3
2 a−b
= 2 a^2 − 2 ab−b^2 , remain-
der 4b^3.
Alternatively, the answer may be expressed as
4 a^3 − 6 a^2 b+ 5 b^3
2 a−b
= 2 a^2 − 2 ab−b^2 +
4 b^3
2 a−b
Now try the following Practice Exercise
PracticeExercise 36 Basic operations in
algebra (answers on page 343)
- Simplifypq×pq^2 r.
- Simplify− 4 a×− 2 a.
- Simplify 3×− 2 q×−q.
- Evaluate 3pq− 5 qr−pqr when p= 3 ,
q=−2andr=4. - Determine the value of 3x^2 yz^3 , given that
x= 2 ,y= 1
1
2
andz=
2
3
- Ifx=5andy=6, evaluate
23 (x−y)
y+xy+ 2 x
- Ifa= 4 ,b= 3 ,c=5andd=6, evaluate
3 a+ 2 b
3 c− 2 d - Simplify 2x÷ 14 xy.
- Simplify
25 x^2 yz^3
5 xyz
- Multiply 3a−bbya+b.
- Multiply 2a− 5 b+cby 3a+b.
- Simplify 3a÷ 9 ab.
- Simplify 4a^2 b÷ 2 a.
- Divide 6x^2 yby 2xy.
- Divide 2x^2 +xy−y^2 byx+y.
- Divide 3p^2 −pq− 2 q^2 byp−q.
- Simplify(a+b)^2 +(a−b)^2.
9.3 Laws of indices
The laws of indices with numbers were covered in
Chapter 7; the laws of indices in algebraic terms are
as follows:
(1) am×an=am+n
For example,a^3 ×a^4 =a^3 +^4 =a^7