66 Basic Engineering Mathematics
Using law (3) of indices gives
d^2 e^2 f^1 /^2
(d^3 /^2 ef^5 /^2 )^2
=
d^2 e^2 f^1 /^2
d^3 e^2 f^5
Using law (2) of indices gives
d^2 −^3 e^2 −^2 f
1
2 −^5 =d−^1 e^0 f−
9
2
=d−^1 f−
9
(^2) sincee^0 =1 from law
(6) of indices
1
df^9 /^2
from law (5) of indices
Now try the following Practice Exercise
PracticeExercise 37 Laws of indices
(answers on page 343)
In problems 1 to 18, simplify the following,giving
each answer as a power.
- z^2 ×z^6 2. a×a^2 ×a^5
- n^8 ×n−^5 4. b^4 ×b^7
- b^2 ÷b^5 6. c^5 ×c^3 ÷c^4
7.
m^5 ×m^6
m^4 ×m^3
8.
(x^2 )(x)
x^6
9.
(
x^3
) 4
10.
(
y^2
)− 3
11.
(
t×t^3
) 2
12.
(
c−^7
)− 2
13.
(
a^2
a^5
) 3
14.
(
1
b^3
) 4
15.
(
b^2
b^7
)− 2
16.
1
(
s^3
) 3
- p^3 qr^2 ×p^2 q^5 r×pqr^2 18.
x^3 y^2 z
x^5 yz^3
- Simplify(x^2 y^3 z)(x^3 yz^2 )and evaluate when
x=
1
2
,y=2andz=3.
- Simplify
a^5 bc^3
a^2 b^3 c^2
and evaluate when
a=
3
2
,b=
1
2
andc=
2
3
Here are some further worked examples on the laws of
indices
Problem 25. Simplify
p^1 /^2 q^2 r^2 /^3
p^1 /^4 q^1 /^2 r^1 /^6
and evaluate
whenp= 16 ,q=9andr=4, taking positive roots
only
Using law (2) of indices givesp
1
2 −
1
(^4) q^2 −
1
(^2) r
2
3 −
1
6
p
1
2 −
1
(^4) q^2 −
1
(^2) r
2
3 −
1
(^6) =p
1
(^4) q
3
(^2) r
1
2
Whenp= 16 ,q=9andr=4,
p
1
(^4) q
3
(^2) r
1
(^2) = 16
1
(^49)
3
(^24)
1
2
=(^4
√
16 )(
√
93 )(
√
4 )from law (4) of indices
=( 2 )( 33 )( 2 )= 108
Problem 26. Simplify
x^2 y^3 +xy^2
xy
Algebraic expressions of the form
a+b
c
can be split
into
a
c
- b
c
. Thus,
x^2 y^3 +xy^2
xy
=
x^2 y^3
xy
+
xy^2
xy
=x^2 −^1 y^3 −^1 +x^1 −^1 y^2 −^1
=xy^2 +y
(sincex^0 =1,fromlaw(6)ofindices).
Problem 27. Simplify
x^2 y
xy^2 −xy
The highest common factor (HCF) of each of the three
terms comprising the numerator and denominator isxy.
Dividing each term byxygives
x^2 y
xy^2 −xy
=
x^2 y
xy
xy^2
xy
−
xy
xy
=
x
y− 1
Problem 28. Simplify
a^2 b
ab^2 −a^1 /^2 b^3