Further algebra 71
(x+ 3 )is now a common factor. Thus,
x^2 (x+ 3 )− 1 (x− 3 )=(x+ 3 )(x^2 − 1 )
Now try the following Practice Exercise
PracticeExercise 40 Factorization (answers
on page 344)
Factorize and simplify the following.
- 2x+42.2xy− 8 xz
- pb+ 2 pc 4. 2x+ 4 xy
- 4d^2 − 12 df^5 6. 4x+ 8 x^2
- 2q^2 + 8 qn 8. rs+rp+rt
- x+ 3 x^2 + 5 x^3 10. abc+b^3 c
- 3x^2 y^4 − 15 xy^2 + 18 xy
- 4p^3 q^2 − 10 pq^3 13. 21a^2 b^2 − 28 ab
- 2xy^2 + 6 x^2 y+ 8 x^3 y
- 2x^2 y− 4 xy^3 + 8 x^3 y^4
- 28y+ 7 y^2 + 14 xy
17.
3 x^2 + 6 x− 3 xy
xy+ 2 y−y^2
18.
abc+ 2 ab
2 c+ 4
−
abc
2 c
19.
5 rs+ 15 r^3 t+ 20 r
6 r^2 t^2 + 8 t+ 2 ts
−
r
2 t
- ay+by+a+b 21. px+qx+py+qy
- ax−ay+bx−by
- 2ax+ 3 ay− 4 bx− 6 by
10.4 Laws of precedence
Sometimes addition, subtraction, multiplication, divi-
sion, powers and brackets can all be involved in an
algebraic expression. With mathematics there is a defi-
nite order of precedence (first met in Chapter 1) which
we need to adhere to.
With thelaws of precedencethe order is
Brackets
Order (or pOwer)
Division
Multiplication
Addition
Subtraction
The first letter of each word spellsBODMAS.
Here are some examples to help understanding of
BODMAS with algebra.
Problem 16. Simplify 2x+ 3 x× 4 x−x
2 x+ 3 x× 4 x−x= 2 x+ 12 x^2 −x (M)
= 2 x−x+ 12 x^2
=x+ 12 x^2 (S)
orx( 1 + 12 x) by factorizing
Problem 17. Simplify(y+ 4 y)× 3 y− 5 y
(y+ 4 y)× 3 y− 5 y= 5 y× 3 y− 5 y (B)
= 15 y^2 − 5 y (M)
or 5 y( 3 y− 1 ) by factorizing
Problem 18. Simplifyp+ 2 p×( 4 p− 7 p)
p+ 2 p×( 4 p− 7 p)=p+ 2 p×− 3 p (B)
=p− 6 p^2 (M)
orp( 1 − 6 p) by factorizing
Problem 19. Simplifyt÷ 2 t+ 3 t− 5 t
t÷ 2 t+ 3 t− 5 t=
t
2 t
+ 3 t− 5 t (D)
=
1
2
+ 3 t− 5 t by cancelling
=
1
2
− 2 t (S)
Problem 20. Simplifyx÷( 4 x+x)− 3 x
x÷( 4 x+x)− 3 x=x÷ 5 x− 3 x (B)
=
x
5 x
− 3 x (D)
=
1
5
− 3 x by cancelling
Problem 21. Simplify 2y÷( 6 y+ 3 y− 5 y)
2 y÷( 6 y+ 3 y− 5 y)= 2 y÷ 4 y (B)
=
2 y
4 y
(D)
=
1
2
by cancelling