SEQUENCES AND SERIES
- If are in A.P, then a+b,
b+c, c+a are in
(a) AP (b) GP (c) HP (d) None - If ratio of sum of ‘n’ terms of
two AP’s are ( ) ( ),
find ratio of their 11th terms
(a) 2:3 (b) 3:4 (c) 4:3 (d) 5:6 - If , β are roots of equation
of equation -
12x+b=0 and , β, are in G.P,
then (a, b) is
(a) (3, 12) (b) (12, 3) (c) (2, 32)
(d) (4, 16)
- If x, 2x+2. 3x+3 are in GP, then
find 4th term
(a) 27 (b) -27 (c) 13.5 (d) -13.5 - The value of ⁄^ ⁄^
⁄^ ............................
(a) (b) (c) 3 (d) - If a, b, c are in A.P, then
are in
(a) AP (b) GP (c) HP (d) None
- The sum of 24 terms of
following series √ (^) √ (^) √
√^ +........^
(a) 300 (b) 300√ (c) 200√ (d)
200
- The sum up to ‘n’ terms of
following series
1+3+7+15+31+........
(a) - n (b) - n-2 (c) - n-
2 (d) None - If a, b, c are in A.P, then ,
are in
(a) A.P (b) GP (c) HP (d) None - If a, b, c are in AP, and
x= 1+a+ .......
y= 1+b+ +.........
z= 1+c+ +..........
then x, y, z are in
(a) AP (b) GP (c) HP (d) None - If = nP+^ (^ ) is
for AP, find common difference
(a) P+ (b) 2P+3 (c) 2 (d) - If x>1, y>1, z>1 are in GP, then
,
,
are in^
(a) AP (b) GP (c) HP (d) None
- If n!, 3×(n!), (n+1)n! are in GP,
find n
(a) 3 (b) 4 (c) 8 (d) 10 - If for an AP, and
then is
(a) (b) (c) 1 (d) 0