3.1 Sequences and Series 123367.For a nonnegative integerk, defineSk(n)= 1 k+ 2 k+···+nk. Prove that
1 +
∑r−^1k= 0(
r
k)
Sk(n)=(n+ 1 )r.368.Let
an=4 n+√
4 n^2 − 1
√
2 n+ 1 +√
2 n− 1, forn≥ 1.Prove thata 1 +a 2 +···+a 40 is a positive integer.369.Prove that
∑nk= 1(− 1 )k+^1
12 − 22 + 32 −···+(− 1 )k+^1 k^2=
2 n
n+ 1.
370.Prove that
(^9999) ∑
n= 1
1
(
√
n+√
n+ 1 )(^4√
n+^4√
n+ 1 )= 9.
371.Letan=
√
1 +( 1 +^1 n)^2 +√
1 +( 1 −^1 n)^2 ,n≥1. Prove that1
a 1+
1
a 2+···+
1
a 20
is a positive integer.372.Evaluate in closed form
∑∞m= 0∑∞
n= 0m!n!
(m+n+ 2 )!.
373.Letan= 3 n+
√
n^2 −1 andbn= 2 (√
n^2 −n+√
n^2 +n),n≥1. Show that
√
a 1 −b 1 +√
a 2 −b 2 +···+√
a 49 −b 49 =A+B√
2 ,
for some integersAandB.374.Evaluate in closed form
∑nk= 0(− 1 )k(n−k)!(n+k)!.