Advanced book on Mathematics Olympiad

(ff) #1

130 3 Real Analysis


The functionφis extended linearly over each open interval that was removed in the
process of constructingC, to obtain a continuous surjectionφ:[ 0 , 1 ]→[ 0 , 1 ]×[ 0 , 1 ].
This concludes the proof of the theorem. 


To visualize this Peano curve, consider the “truncations’’ of the Cantor set

C 1 =

{

0 ,

1

3

,

2

3

, 1

}

,C 2 =

{

0 ,

1

9

,

2

9

,

1

3

,

2

3

,

7

9

,

8

9

, 1

}

,

C 3 =

{

0 ,

1

27

,

2

27

,

1

9

,

2

9

,

7

27

,

8

27

,

1

3

,

2

3

,

19

27

,

20

27

,

7

9

,

8

9

,

25

27

,

26

27

, 1

}

,

C 4 =

{

0 ,

1

81

,

2

81

,

1

27

,

2

27

,

7

81

,

8

81

,

1

9

,

2

9

,

19

81

,

20

81

,

7

27

,

8

27

,

25

81

,

26

81

,

1

3

,

2

3

,

55

81

,

56

81

,

19

27

,

20

27

,

61

81

,

62

81

,

7

9

,

8

9

,

73

81

,

74

81

,

25

27

,

26

27

,

79

81

,

80

81

, 1

}

,...,

and defineφn:Cn→[ 0 , 1 ]×[ 0 , 1 ],n≥1, as above, and then extend linearly. This
gives rise to the curves from Figure 20. The curveφis their limit. It is a fractal: if we
cut the unit square into four equal squares, the curve restricted to each of these squares
resembles the original curve.


n= 12 n= n= 3 n=^4
Figure 20

386.Letf:R→Rbe a continuous function satisfyingf(x)=f(x^2 )for allx∈R.
Prove thatfis constant.


387.Does there exist a continuous functionf:[ 0 , 1 ]→Rthat assumes every element
of its range an even (finite) number of times?


388.Letf(x)be a continuous function defined on[ 0 , 1 ]such that
(i)f( 0 )=f( 1 )=0;
(ii) 2f(x)+f(y)= 3 f(^2 x 3 +y)for allx, y∈[ 0 , 1 ].
Prove thatf(x)=0 for allx∈[ 0 , 1 ].


389.Letf:R→Rbe a continuous function with the property that


lim
h→ 0 +

f(x+ 2 h)−f(x+h)
h

= 0 , for allx∈R.

Prove thatfis constant.
Free download pdf