3.2 Continuity, Derivatives, and Integrals 149
With the substitutionu=x^1 a+^12 the integral becomes
−
1
a
∫
1
√
u^2 +^34
du=−
1
a
ln
(
u+
√
u^2 +
3
4
)
+C
=−
1
a
ln
(
1
xa
+
1
2
+
√
1
x^2 a
+
1
xa
+ 1
)
+C.
444.Compute the integral
∫
( 1 + 2 x^2 )ex
2
dx.
445.Compute
∫
x+sinx−cosx− 1
x+ex+sinx
dx.
446.Find
∫
(x^6 +x^3 )^3
√
x^3 + 2 dx
447.Compute the integral
∫
x^2 + 1
x^4 −x^2 + 1
dx
448.Compute
∫ √
ex− 1
ex+ 1
dx, x > 0.
449.Find the antiderivatives of the functionf:[ 0 , 2 ]→R,
f(x)=
√
x^3 + 2 − 2
√
x^3 + 1 +
√
x^3 + 10 − 6
√
x^3 + 1.
450.For a positive integern, compute the integral
∫
xn
1 +x+x
2
2 !+···+
xn
n!
dx.
451.Compute the integral
∫
dx
( 1 −x^2 )^4
√
2 x^2 − 1
.
452.Compute
∫
x^4 + 1
x^6 + 1
dx.
Give the answer in the formαarctanP(x)Q(x)+C,α∈Q, andP (x), Q(x)∈Z[x].