164 3 Real Analysis
487.Compute the ratio
1 +π
4
5 !+π^8
9! +π^12
13 !+···
1
3 !+π^4
7 !+π^8
11 !+π^12
15 !+···.
488.Fora>0, prove that
∫∞
−∞e−x2
cosaxdx=√
πe−a(^2) / 4
.
489.Find a quadratic polynomialP(x)with real coefficients such that
∣∣
∣∣P(x)+^1
x− 4
∣∣
∣∣≤ 0. 01 , for allx∈[− 1 , 1 ].490.Compute to three decimal places
∫ 10cos√
xdx.491.Prove that for|x|<1,
arcsinx=∑∞
k= 01
22 k( 2 k+ 1 )(
2 k
k)
x^2 k+^1.492.(a) Prove that for|x|<2,
∑∞k= 11
( 2 k
k)x^2 k=x(
4 arcsin(x
2)
+x√
4 −x^2)
( 4 −x^2 )√
4 −x^2.
(b) Prove the identity∑∞k= 11
( 2 k
k)=
2 π√
3 + 36
27
.
In a different perspective, we have the Fourier series expansions. The Fourier series
allows us to write an arbitrary oscillation as a superposition of sinusoidal oscillations.
Mathematically, a functionf:R→Rthat is continuous and periodic of periodTadmits
a Fourier series expansion
f(x)=a 0 +∑∞
n= 1ancos2 nπ
T
x+∑∞
n= 1bnsin2 nπ
T
x.