164 3 Real Analysis
487.Compute the ratio
1 +π
4
5 !+
π^8
9! +
π^12
13 !+···
1
3 !+
π^4
7 !+
π^8
11 !+
π^12
15 !+···
.
488.Fora>0, prove that
∫∞
−∞
e−x
2
cosaxdx=
√
πe−a
(^2) / 4
.
489.Find a quadratic polynomialP(x)with real coefficients such that
∣∣
∣∣P(x)+^1
x− 4
∣∣
∣∣≤ 0. 01 , for allx∈[− 1 , 1 ].
490.Compute to three decimal places
∫ 1
0
cos
√
xdx.
491.Prove that for|x|<1,
arcsinx=
∑∞
k= 0
1
22 k( 2 k+ 1 )
(
2 k
k
)
x^2 k+^1.
492.(a) Prove that for|x|<2,
∑∞
k= 1
1
( 2 k
k
)x^2 k=
x
(
4 arcsin
(x
2
)
+x
√
4 −x^2
)
( 4 −x^2 )
√
4 −x^2
.
(b) Prove the identity
∑∞
k= 1
1
( 2 k
k
)=
2 π
√
3 + 36
27
.
In a different perspective, we have the Fourier series expansions. The Fourier series
allows us to write an arbitrary oscillation as a superposition of sinusoidal oscillations.
Mathematically, a functionf:R→Rthat is continuous and periodic of periodTadmits
a Fourier series expansion
f(x)=a 0 +
∑∞
n= 1
ancos
2 nπ
T
x+
∑∞
n= 1
bnsin
2 nπ
T
x.