176 3 Real AnalysisV=
1
2
∫∞
0t^2
t^4 + 1dt.A routine but lengthy computation using Jacobi’s method of partial fraction decomposition
shows that the antiderivative of t
2
t^4 + 1 is
1
2
√
2
arctanx^2 − 1
x√
2
+
1
4
√
2
lnx^2 −x√
2 + 1
x^2 +x√
2 + 1
+C,
whenceV = π√
2
8. Equating the two values forV, we obtainI =√
2 π
4. A similar
argument yieldsJ=√ 2 π
4.
The solutions to all but last problems below are based on appropriate changes of
coordinates.514.Compute the integral∫∫
Dxdxdy, whereD={
(x, y)∈R^2 |x≥ 0 , 1 ≤xy≤ 2 , 1 ≤y
x≤ 2
}
.
515.Find the integral of the functionf (x, y, z)=x^4 + 2 y^4
x^4 + 4 y^4 +z^4over the unit ballB={(x,y,z)|x^2 +y^2 +z^2 ≤ 1 }.
516.Compute the integral
∫∫Ddxdy
(x^2 +y^2 )^2,
whereDis the domain bounded by the circlesx^2 +y^2 − 2 x= 0 ,x^2 +y^2 − 4 x= 0 ,
x^2 +y^2 − 2 y= 0 ,x^2 +y^2 − 6 y= 0.517.Compute the integralI=∫∫
D|xy|dxdy,whereD=
{
(x, y)∈R^2 |x≥ 0 ,(
x^2
a^2+
y^2
b^2) 2
≤
x^2
a^2−
y^2
b^2}
,a,b> 0.