Advanced book on Mathematics Olympiad

(ff) #1

234 4 Geometry and Trigonometry


657.Show that the trigonometric equation


sin(cosx)=cos(sinx)
has no solutions.

658.Show that if the anglesaandbsatisfy


tan^2 atan^2 b= 1 +tan^2 a+tan^2 b,
then
sinasinb=±sin 45◦.

659.Find the range of the functionf:R→R,f(x)=(sinx+ 1 )(cosx+ 1 ).


660.Prove that
sec^2 nx+csc^2 nx≥ 2 n+^1 ,
for all integersn≥0, and for allx∈( 0 ,π 2 ).


661.Compute the integral
∫ √
1 −x
1 +x


dx, x∈(− 1 , 1 ).

662.Find all integerskfor which the two-variable functionf (x, y)=cos( 19 x+ 99 y)
can be written as a polynomial in cosx,cosy,cos(x+ky).


663.Leta, b, c, d∈[ 0 ,π]be such that


2 cosa+6 cosb+7 cosc+9 cosd= 0
and
2 sina−6 sinb+7 sinc−9 sind= 0.
Prove that 3 cos(a+d)=7 cos(b+c).

664.Letabe a real number. Prove that


5 (sin^3 a+cos^3 a)+3 sinacosa= 0. 04
if and only if
5 (sina+cosa)+2 sinacosa= 0. 04.

665.Leta 0 ,a 1 ,...,anbe numbers from the interval( 0 ,π 2 )such that


tan

(

a 0 −
π
4

)

+tan

(

a 1 −
π
4

)

+···+tan

(

an−
π
4

)

≥n− 1.

Prove that
tana 0 tana 1 ···tanan≥nn+^1.
Free download pdf