Advanced book on Mathematics Olympiad

(ff) #1

240 4 Geometry and Trigonometry


677.Find the maximum value of


S=( 1 −x 1 )( 1 −y 1 )+( 1 −x 2 )( 1 −y 2 )

ifx 12 +x 22 =y 12 +y 22 =c^2 , wherecis some positive number.

678.Prove for all real numbersa, b, cthe inequality


|a−b|

1 +a^2


1 +b^2


|a−c|

1 +a^2


1 +c^2

+

|b−c|

1 +b^2


1 +c^2

.

679.Leta, b, cbe real numbers. Prove that


(ab+bc+ca− 1 )^2 ≤(a^2 + 1 )(b^2 + 1 )(c^2 + 1 ).

680.Prove that


x

1 +x^2

+

y

1 +y^2

+

z

1 +z^2


3


3

2

if the positive real numbersx, y, zsatisfyx+y+z=xyz.

681.Prove that


x
1 −x^2

+

y
1 −y^2

+

z
1 −z^2


3


3

2

if 0< x,y,z <1 andxy+yz+xz=1.

682.Solve the following system of equations in real numbers:


3 x−y
x− 3 y

=x^2 ,

3 y−z
y− 3 z

=y^2 ,

3 z−x
z− 3 x

=z^2.

683.Leta 0 =



2,b 0 =2, and

an+ 1 =


2 −


4 −a^2 n,bn+ 1 =
2 bn
2 +


4 +bn^2

,n≥ 0.

(a) Prove that the sequences(an)nand(bn)nare decreasing and converge to zero.
(b) Prove that the sequence( 2 nan)nis increasing, the sequence( 2 nbn)nis decreas-
ing, and these two sequences converge to the same limit.
Free download pdf